首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   33篇
  2022年   3篇
  2021年   13篇
  2020年   5篇
  2019年   10篇
  2018年   15篇
  2017年   7篇
  2016年   23篇
  2015年   23篇
  2014年   24篇
  2013年   38篇
  2012年   27篇
  2011年   23篇
  2010年   19篇
  2009年   20篇
  2008年   35篇
  2007年   23篇
  2006年   20篇
  2005年   25篇
  2004年   19篇
  2003年   14篇
  2002年   17篇
  2001年   9篇
  2000年   9篇
  1999年   10篇
  1998年   7篇
  1997年   4篇
  1996年   2篇
  1995年   9篇
  1994年   4篇
  1993年   6篇
  1992年   9篇
  1991年   5篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1977年   2篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1972年   7篇
  1971年   2篇
  1970年   2篇
排序方式: 共有547条查询结果,搜索用时 50 毫秒
61.
Norovirus immunity is poorly understood as the limited data available on protection after infection are often contradictory. In contrast to the more prominent GII noroviruses, GI norovirus infections are less frequent in outbreaks. The GI noroviruses display very complex patterns of heterotypic immune responses following infection, and many individuals are highly susceptible to reinfection. To study the immune responses and mechanisms of GI.1 persistence, we built structural models and recombinant virus-like particles (VLPs) of five GI strains: GI.1-1968, GI.1-2001, GI.2-1999, GI.3-1999, and GI.4-2000. Structural models of four GI genotype capsid P domain dimers suggested that intragenotype structural variation is limited, that the GI binding pocket is mostly preserved between genotypes, and that a conserved, surface-exposed epitope may allow for highly cross-reactive immune responses. GI VLPs bound to histo-blood group antigens (HBGAs) including fucose, Lewis, and A antigens. Volunteers infected with GI.1-1968 (n = 10) had significant increases between prechallenge and convalescent reactive IgG for all five GI VLPs measured by enzyme immunoassay. Potential cross-neutralization of GI VLPs was demonstrated by convalescent-phase serum cross-blockade of GI VLP-HBGA interaction. Although group responses were significant for all GI VLPs, each individual volunteer demonstrated a unique VLP blockade pattern. Further, peripheral blood mononuclear cells (PBMCs) were stimulated with each of the VLPs, and secretion of gamma interferon (IFN-γ) was measured. As seen with blockade responses, IFN-γ secretion responses differed by individual. Sixty percent responded to at least one GI VLP, with only two volunteers responding to GI.1 VLP. Importantly, four of five individuals with sufficient PBMCs for cross-reactivity studies responded more robustly to other GI VLPs. These data suggest that preexposure history and deceptive imprinting may complicate PBMC and B-cell immune responses in some GI.1-1968-challenged individuals and highlight a potential complication in the design of efficacious norovirus vaccines.Noroviruses are the second-most important cause of severe viral gastroenteritis in young children and cause approximately 20% of endemic familial diarrheal disease and traveler''s diarrhea in all ages (reviewed in references 45 and 70). Noroviruses are genetically grouped into five different genogroups (GI to GV). GI and GII genogroups are responsible for the majority of human infections and are subdivided into more than 25 different genotypes (for example, GI.1 is genogroup I genotype 1). Most norovirus outbreaks are caused by the GII.4 genotype (65). Although genogroup I strains are associated with fewer reported outbreaks, they are frequently identified in environmental samples and in children (7, 21, 33, 58, 74, 82). The severity of norovirus disease is usually moderate although infection can be especially virulent, even fatal, in the elderly (14, 24, 31, 38, 46, 67). An effective vaccine would be particularly advantageous to vulnerable older populations, food handlers, child and health care providers, and military personnel. One major obstacle to norovirus vaccine development is the lack of understanding of the extensive antigenic relationships between heterogenic norovirus family members and of how this antigenic heterogeneity affects host protective immunity. Norovirus heterogeneity can be examined through sequence, structural, ligand binding, and host immune studies.Structurally, noroviruses are ∼38-nm icosahedral viruses with an ∼7.5 kb single-stranded, positive-sense RNA genome that encodes three large open reading frames (ORFs). ORF1 encodes the replicase polyprotein, while ORFs 2 and 3 encode the major and minor capsid proteins, respectively. The ORF2 major capsid protein sequence can vary by up to 60% between genogroups and by ∼20 to 30% between the genotypes (91). Expression of the major capsid protein (ORF2) in baculovirus and Venezuelan equine encephalitis (VEE) results in formation of virus-like particles (VLPs) composed of 180 copies of the monomeric protein (72). The monomer is structurally divided into the shell domain (S) that forms the structural core of the particle and the protruding domain (P) that protrudes away from the core. The P domain is further subdivided into the P1 subdomain (residues 226 to 278 and 406 to 520) and the P2 subdomain (residues 279 to 405) (72). P2 represents the most exposed surface of the viral particle and determines interaction with both potential neutralizing antibody recognition sites and putative cellular receptors, the histo-blood group antigens (HBGAs) (13, 16, 54, 57).The P domain has been shown to independently form dimers and P particles comprised of 12 monomers (85). Dimers and P particles share structural and HBGA binding similarities with the VLP generated with the same monomers (9, 85, 87). Three norovirus-HBGA binding profiles have been identified: (i) those that bind A/B and/or H epitopes, (ii) those that bind Lewis and/or H epitopes, and (iii) those that do not bind any available HBGA (86). Elegant structural analyses of Norwalk virus VLPs in complex with synthetic HBGAs identified a highly conserved binding site within the G1 noroviruses and predicted that structural constraints within the GI strains would restrict HBGA binding patterns to either a terminal Gal-Fuc or GalNAc (18, 88).Norwalk virus (NV; GI.1-1968) is the prototypic GI strain and typically infects individuals who encode a functional FUT2 α-1,2-fucosyltransferase enzyme resulting in expression of HBGAs on mucosal surfaces (secretor-positive phenotype) (53). Individuals who do not encode a functional FUT2 enzyme have a secretor-negative phenotype, do not express ABH HBGAs on mucosal surfaces, and are resistant to NV infection. Outbreak investigations have confirmed the association between HBGA expression and norovirus infection for some GI and GII strains (37, 39, 43, 49, 89). It remains likely that enzymes other than FUT2 may function as norovirus susceptibility factors because secretor-negative individuals have low-level norovirus-reactive antibodies (49, 52, 53) and can become infected after challenge with a GII.2 strain (52); in addition, some norovirus strains bind to FUT2-independent HBGAs in vitro (35, 54, 79).Early challenge studies (reviewed in reference 50) suggested that short-term protective immunity may occur following NV challenge (96). Demonstration of long-term protective immunity has been more complex. One early rechallenge study found that 50% of NV-challenged volunteers experienced repeat infections after ∼3 years while the other 50% remained well initially and after repeated challenge (69). Whether these volunteers remained disease free because of acquired immunity or genetic resistance could not be ascertained (69). However, contemporary norovirus challenge studies suggest that an early mucosal IgA response is associated with protection from NV infection (53). Further, strong gamma interferon (IFN-γ) secretion from CD4+ T cells (52) was identified in some uninfected GII.2-1976-challenged volunteers.In the absence of additional rechallenge studies, the most compelling evidence for a long-term protective immune response comes from the growing number of reports from around the world indicating that periods of “high norovirus activity” correlated with the emergence of new GII.4 strains (1, 10, 42, 66, 75, 90). Subsequently, the years following the high activity were characterized by decreased numbers of outbreaks, indicating that herd immunity may be an important regulator of GII.4 noroviruses (54, 80, 81). Clearly, the molecular basis for differential protective immunity/susceptibility following repeat norovirus infection is complex and a major challenge for the field.In this report, we compare the VLP phenotypes of the prototypical norovirus strain NV to an extant GI.1 strain isolated 33 years after NV and to a panel of VLPs representing strains GI.2, GI.3, and GI.4. In the results, we evaluate sequence conservation, carbohydrate (CHO) binding patterns, and antigenic relatedness at the antibody and T-cell levels. In contrast to earlier predictions (19), these data suggest that the GI noroviruses can bind many different HBGAs and that individuals infected with norovirus usually mount robust B- and T-cell responses against homologous strains. Surprisingly, some individuals appear to preferentially mount immune responses against heterologous GI strains.  相似文献   
62.
We have previously suggested that a variety of environmental factors might be first sensed by epidermal keratinocytes, which represent the frontier of the body. To further examine this idea, in the present study, we examined the intracellular calcium responses of cultured keratinocytes to external hydraulic pressure. First, we compared the responses of undifferentiated and differentiated keratinocytes with those of fibroblasts, vascular endothelial cells (VEC), and lymphatic endothelial cells. Elevation of intracellular calcium was observed after application of pressure to keratinocytes, fibroblasts, and VEC. The calcium propagation extended over a larger area and continued for a longer period of time in differentiated keratinocytes, as compared with the other cells. The response of the keratinocytes was dramatically reduced when the cells were incubated in medium without calcium. Application of a non‐selective transient receptor potential (TRP) channel blocker also attenuated the calcium response. These results suggest that differentiated keratinocytes are sensitive to external pressure and that TRP might be involved in the mechanism of their response. J. Cell. Physiol. 224:229–233, 2010 © 2010 Wiley‐Liss, Inc.  相似文献   
63.
Regulation of fibroblast growth factor-23 signaling by klotho   总被引:20,自引:0,他引:20  
The aging suppressor gene Klotho encodes a single-pass transmembrane protein. Klotho-deficient mice exhibit a variety of aging-like phenotypes, many of which are similar to those observed in fibroblast growth factor-23 (FGF23)-deficient mice. To test the possibility that Klotho and FGF23 may function in a common signal transduction pathway(s), we investigated whether Klotho is involved in FGF signaling. Here we show that Klotho protein directly binds to multiple FGF receptors (FGFRs). The Klotho-FGFR complex binds to FGF23 with higher affinity than FGFR or Klotho alone. In addition, Klotho significantly enhanced the ability of FGF23 to induce phosphorylation of FGF receptor substrate and ERK in various types of cells. Thus, Klotho functions as a cofactor essential for activation of FGF signaling by FGF23.  相似文献   
64.
Deinococcus radiodurans is extremely resistant to the effects of ionizing radiation. The source of the radiation resistance is not known, but an expansion of specific protein families related to stress response and damage control has been observed. DNA repair enzymes are among the expanded protein families in D. radiodurans, and genes encoding five different uracil-DNA glycosylases are identified in the genome. Here we report the three-dimensional structure of the mismatch-specific uracil-DNA glycosylase (MUG) from D. radiodurans (drMUG) to a resolution of 1.75 angstroms. Structural analyses suggest that drMUG possesses a novel catalytic residue, Asp-93. Activity measurements show that drMUG has a modified and broadened substrate specificity compared with Escherichia coli MUG. The importance of Asp-93 for activity was confirmed by structural analysis and abolished activity for the mutant drMUGD93A. Two other microorganisms, Bradyrhizobium japonicum and Rhodopseudomonas palustris, possess genes that encode MUGs with the highest sequence identity to drMUG among all of the bacterial MUGs examined. A phylogenetic analysis indicates that these three MUGs form a new MUG/thymidine-DNA glycosylase subfamily, here called the MUG2 family. We suggest that the novel catalytic residue (Asp-93) has evolved to provide drMUG with broad substrate specificity to increase the DNA repair repertoire of D. radiodurans.  相似文献   
65.
Phospholipase A(2) (PLA(2)) enzymes become activated by binding to biological membranes and hydrolyze phospholipids to free fatty acids and lyso-phospholipids, the precursors of inflammatory mediators. To understand the functional significance of amino acid residues at key positions, we have studied the effects of the substitution of Val(3) (membrane binding surface) and Phe(5) (substrate binding pocket) of human group IIA PLA(2) by tryptophan on the structure and function of the enzyme. Despite the close proximity of the sites of mutations, the V3W mutation results in substantial enhancement of the enzyme activity, whereas the F5W mutant demonstrates significantly suppressed activity. A structural analysis of all three proteins free in buffer and bound to membranes indicates that large differences in activities result from distinct conformational changes in PLA(2)s upon membrane binding. Although PLA(2) and the V3W mutant demonstrate a decrease in helical content and an increase in helix flexibility, the F5W mutant experiences partial distortion of the alpha-helical structure presumably resulting from the tendency of Trp(5) to insert into the membrane. Furthermore, whereas the PLA(2) and the V3W mutant bind to the membrane at similar and apparently productive-mode orientation, the F5W mutant binds to membranes with a distinctly different orientation. It is suggested that both the stimulatory effect of the V3W mutation and the inhibitory effect of the F5W mutation result from the high affinity of Trp for the membrane-water interface. Although Trp(3) at the membrane binding face of PLA(2) facilitates the proper membrane binding of the enzyme, Trp(5) in the internal substrate binding site causes partial unwinding of the N-terminal helix in order to interact with the membrane.  相似文献   
66.
67.
Three facultatively anaerobic, Gram-positive staining, rod-shaped, non-spore forming, flagellated bacterial strains, BL-75, BL-79T and BL-104, were isolated from chlorinated solvent-contaminated groundwater. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed them to represent a distinct lineage within the genus Actinomyces with sequence identities in the range of <88–95.4% with previously described Actinomyces species. The strains were oxidase and catalase negative. Nitrate was not reduced. Esculin was hydrolyzed. Growth occurred in the temperature range of 20–43°C (optimum 30–37°C) and pH range 4.5–9.0 (optimum pH 6.5). Substrates supporting growth included various mono-, di-, and tri-saccharides. The end products of glucose fermentation were acetate, lactate, succinate and formate. Fermentative growth was observed in the presence of near saturation concentrations of perchloroethene (PCE) and toluene and in the presence of 1,2-dichloroethane and 1,1,2-trichloroethane at concentrations up to at least 24.4 mM and 11.2 mM, respectively. The dominant cellular fatty acids when grown in peptone/yeast extract/glucose (PYG) medium were C18:1 ω9c, C16:0, and C14:0. The peptidoglycan was found to contain the amino acids alanine, glutamic acid, lysine, and ornithine at approximate molar ratios of 1.7 Ala: 2.3 Glu: 1.3 Lys: 1.0 Orn. The cell wall sugars were found to include rhamnose and mannose. The polar lipids were found to include diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phospholipid (PL), phosphoglycolipids (PGL), and glycolipids (GL). The main respiratory quinone of strain BL-79T was MK-9(H4), with minor components MK-10(H4) and MK-8(H4). The DNA mol% G+C content of the type strain is 69.8%. On the basis of phylogenetic and phenotypic characteristics, these strains could be differentiated from previously described species of the genus Actinomyces. Strains BL-75, BL-79T and BL-104 are designated as a novel species, for which the name Actinomyces naturae sp. nov. is proposed. This is the first Actinomyces species isolated from an environmental rather than human or animal sources. The type strain of Actinomyces naturae is BL-79T (= CCUG 56698T = NRRL B-24670T).  相似文献   
68.
Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.  相似文献   
69.
The term ??underutilized?? is often used to characterize the range of plant species whose potential contribution to food security, health, income generation, and environmental services has not yet been fully exploited. To harness unexploited resources, the first step is to prevent them from extinction and to conserve them in- and/or ex-situ. To utilize plant species as crops, plants must be collected, conserved, evaluated, and then if necessary manipulated. In this context, significant international efforts have focused on impeding the erosion of genetic diversity. Thousands of new accessions are introduced into germplasm institutes each year. Assessment of their molecular diversity is necessary to eliminate redundant genotypes. Marker systems have been used not only for genotyping to reduce redundancy and develop a core set, but also for a wide variety of other purposes. The use of markers based on single nucleotide polymorphisms, copy number variation, and insertions/deletions, as well as genotyping by sequencing, is becoming popular for genetic mapping and analyses of quantitative trait loci. This review discusses current marker systems and genomic analyses of a number of underutilized crops.  相似文献   
70.
Ma J  Zhu TP  Moe MC  Ye P  Yao K 《Cytokine》2012,59(1):100-107
Opticin, a small leucine rich repeat protein (SLRP) contributes to vitreoretinal adhesion. This study was conducted to investigate the effects of hypoxia and vascular endothelial growth factor (VEGF) on matrix metalloproteinase (MMP) mediated opticin production in retinal pigment epithelium (RPE) cells. Primary cultured human RPE cells were treated with hypoxia (low oxygen and cobalt chloride) or VEGF (0-100 ng/mL). The mRNA levels of opticin and the protein levels of intra and extracellular opticin in RPE cells were examined by RT-PCR and Western blot assay, respectively. Furthermore, the MMP activity was analyzed by zymography, and EDTA was used as an MMP inhibitor. Analysis of the effect of MMP-2 on opticin was performed by recombinant human (rh) MMP-2 stimulation in RPE cultures and by human vitreous sample digestion with activated rhMMP-2. Our results showed that opticin was expressed by primary cultured human RPE cells. Hypoxia and VEGF stimulation did not alter opticin mRNA and protein expression in RPE cells, but markedly decreased the protein levels of extracellular opticin following increased latent MMP-2 activity. The VEGF- and hypoxia induced opticin degradation in the culture medium was blocked by EDTA. Together, opticin levels in the culture medium were also reduced after rhMMP-2 treatment. In addition, opticin in human vitreous samples could be cleaved by rhMMP-2. These results reveal that VEGF and hypoxia could decrease opticin protein levels in the human RPE secretome, and that opticin may be an enzymatic substrate for MMP-2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号