首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
  2023年   3篇
  2020年   2篇
  2019年   1篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
21.
The self-assembly of EAK16-family peptides in a bulk solution was studied using a combination of all-atom and coarse-grained molecular dynamics simulations. In addition, specified concentrations of EAK16 peptides were induced to form fibrillary or globular assemblies in vitro. The results show that the combination of all-atom molecular dynamics simulations on the single- and double-chain levels and coarse-grained simulations on the many-chain level predicts the experimental observations reasonably well. At neutral pH conditions, EAK16-I and EAK16-II assemble into fibrillary structures, whereas EAK16-IV aggregates into globular assemblies. Mechanisms of the formation of fibrillar and globular assemblies are described using the simulation results.  相似文献   
22.

Background

Conventional methods for spike train analysis are predominantly based on the rate function. Additionally, many experiments have utilized a temporal coding mechanism. Several techniques have been used for analyzing these two sources of information separately, but using both sources in a single framework remains a challenging problem. Here, an innovative technique is proposed for spike train analysis that considers both rate and temporal information.

Methodology/Principal Findings

Point process modeling approach is used to estimate the stimulus conditional distribution, based on observation of repeated trials. The extended Kalman filter is applied for estimation of the parameters in a parametric model. The marked point process strategy is used in order to extend this model from a single neuron to an entire neuronal population. Each spike train is transformed into a binary vector and then projected from the observation space onto the likelihood space. This projection generates a newly structured space that integrates temporal and rate information, thus improving performance of distribution-based classifiers. In this space, the stimulus-specific information is used as a distance metric between two stimuli. To illustrate the advantages of the proposed technique, spiking activity of inferior temporal cortex neurons in the macaque monkey are analyzed in both the observation and likelihood spaces. Based on goodness-of-fit, performance of the estimation method is demonstrated and the results are subsequently compared with the firing rate-based framework.

Conclusions/Significance

From both rate and temporal information integration and improvement in the neural discrimination of stimuli, it may be concluded that the likelihood space generates a more accurate representation of stimulus space. Further, an understanding of the neuronal mechanism devoted to visual object categorization may be addressed in this framework as well.  相似文献   
23.
The anticholinesterase activities of newly synthesized phosphorothioates and phosphorodithioates were investigated. The compounds were evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition potency through IC50 determination. The selectivities of the synthesized compounds toward both enzymes were determined and compared in terms of their molecular structures.  相似文献   
24.
As a class of short noncoding RNAs, microRNAs (miRNAs) play a key role in the modulation of gene expression. Although, the regulatory roles of currently identified miRNAs in various cancer types including breast cancer have been well documented, there are many as yet undiscovered miRNAs. The aim of the current study was to bioinformatically reanalyze a list of 189 potentially new miRNAs introduced in a previously published paper (PMID: 21346806) and experimentally explore the existence and function of a candidate one: hsa-miR-B43 in breast cancer cells. The sequences of 189 potential miRNAs were re-checked in the miRbase database. Genomic location and conservation of them were assessed with the University of California Santa Cruz (UCSC) genome browser. SSC profiler, RNAfold, miRNAFold, MiPred, and FOMmiR bioinformatics tools were furthermore utilized to explore potential hairpin structures and differentiate real miRNA precursors from pseudo ones. hsa-miR-B43 was finally selected as one of the best candidates for laboratory verification. The expression and function of hsa-miR-B43 were examined by real-time polymerase chain reaction, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and wound-healing assays. DIANA-microT, RNAhybrid and Enrichr tools were used to predict the miRNA target genes and for further enrichment analysis. We could detect the exogenous and endogenous expression of hsa-miR-B43, as a real novel miRNA, in cancer cell lines. Gene Ontology enrichment, pathway analysis and wound-healing assay results furthermore confirmed that a metastasis-related function may be assigned to hsa-miR-B43. Our results introduced hsa-miR-B43, as a novel functional miRNA, which might play a role in the metastatic process. Further studies will be necessary to completely survey the existence and function of hsa-miR-B43 in other cancer types.  相似文献   
25.
26.
Tectorial membrane stiffness gradients   总被引:1,自引:0,他引:1  
  相似文献   
27.
Protein misfolding and aggregation are pathological aspects of numerous neurodegenerative diseases. Aggregates of alpha-synuclein are major components of the Lewy bodies and Lewy neurites associated with Parkinson's Disease (PD). A natively unfolded protein, alpha-synuclein can adopt different aggregated morphologies, including oligomers, protofibrils and fibrils. The small oligomeric aggregates have been shown to be particularly toxic. Antibodies that neutralize the neurotoxic aggregates without interfering with beneficial functions of monomeric alpha-synuclein can be useful therapeutics. We were able to isolate single chain antibody fragments (scFvs) from a phage displayed antibody library against the target antigen morphology using a novel biopanning technique that utilizes atomic force microscopy (AFM) to image and immobilize specific morphologies of alpha-synuclein. The scFv described here binds only to an oligomeric form of alpha-synuclein and inhibits both aggregation and toxicity of alpha-synuclein in vitro. This scFv can have potential therapeutic value in controlling misfolding and aggregation of alpha-synuclein in vivo when expressed intracellularly in dopaminergic neurons as an intrabody.  相似文献   
28.
The synthesis, characterization and antileukemic activity of rationally designed amino dimeric naphthoquinone (BiQ) possessing aziridine as alkylating moiety is described. Bis-aziridinyl BiQ decreased proliferation of acute myeloid leukemia (AML) cell lines and primary cells from patients, and exhibited potent (nanomolar) inhibition of colony formation and overall cell survival in AML cells. Effective production of reactive oxygen species (ROS) and double stranded DNA breaks (DSB) induced by bis-aziridinyl BiQ is reported. Bis-dimethylamine BiQ, as the isostere of bis-aziridinyl BiQ but without the alkylating moiety did not show as potent anti-AML activity. Systemic administration of bis-aziridinyl BiQ was well tolerated in NSG mice.  相似文献   
29.
Amyloid β (Aβ) fibrils and amorphous aggregates are found in the brain of patients with Alzheimer’s disease (AD), and are implicated in the etiology of AD. The metal imbalance is also among leading causes of AD, owing to the fact that Aβ aggregation takes place in the synaptic cleft where Aβ, Cu(II) and Fe(III) are found in abnormally high concentrations. Aβ40 and Aβ42 are the main components of plaques found in afflicted brains. Coordination of Cu(II) and Fe(III) ions to Aβ peptides have been linked to Aβ aggregation and production of reactive oxygen species, two key events in the development of AD pathology. Metal chelation was proposed as a therapy for AD on the basis that it might prevent Aβ aggregation. In this work, we first examined the formation of Aβ40 and Aβ42 aggregates in the presence of metal ions, i.e. Fe(III) and Cu(II), which were detected by fluorescence spectroscopy and atomic force microscopy. Second, we studied the ability of the two chelators, ethylenediaminetetraacetic acid and 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol), to investigate their effect on the availability of these metal ions to interact with Aβ and thereby their effect on Aβ accumulation. Our findings show that Fe(III), but not Cu(II), promote aggregation of both Aβ40 and Aβ42. We also found that only clioquinol decreased significantly iron ion-induced aggregation of Aβ42. The presence of ions and/or chelators also affected the morphology of Aβ aggregates.  相似文献   
30.
Beta-amyloid (Abeta) is a major pathological determinant of Alzheimer's disease (AD). Both active and passive immunization studies have shown that antibodies against Abeta are effective in decreasing cerebral Abeta levels, reducing Abeta accumulation, and attenuating cognitive deficits in animal models of AD. However, the therapeutic potential of these antibodies in human AD patients is limited because of adverse inflammatory reactions and cerebral hemorrhaging associated with the treatments. Here we show that single chain variable fragments (scFv's) represent an attractive alternative to more conventional antibody-based therapeutics to reduce Abeta toxicity. The binding affinities and binding epitopes of two different scFv's to Abeta were characterized using a surface plasmon resonance (SPR) biosensor. An scFv binding the 17-28 region of Abeta effectively inhibited in vitro aggregation of Abeta as determined by thioflavin T (ThT) fluorescence staining and atomic force microscopy (AFM) analysis, while an scFv binding the carboxyl-terminal region of Abeta (residues 29-40) did not inhibit aggregation. The scFv to the 17-28 region when co-incubated with Abeta not only decreased aggregation but also eliminated any toxic effects of aggregated Abeta on the human neuroblastoma cell line, SH-SY5Y. The ability of scFv's to inhibit both aggregation and cytotoxicity of Abeta indicates that scFv's have potential therapeutic value for treating AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号