首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   16篇
  2021年   1篇
  2019年   3篇
  2016年   3篇
  2015年   9篇
  2014年   9篇
  2013年   6篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   6篇
  2007年   4篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1998年   3篇
  1997年   5篇
  1996年   6篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
11.
12.
During the last decades, the critically endangered Hooded Vulture Necrosyrtes monachus has strongly declined across its African range. Although direct persecution has been suggested as a major cause of this decline, little is known about the impact of humans on reproductive output in West Africa. We studied the impact of human activities on the reproductive output of Hooded Vultures in the Garango area of Burkina Faso. Twenty and 56 nesting attempts were monitored, respectively, during the breeding season in 2013/14 and 2014/15, to determine reproductive success and identify causes of nest failure. Annual breeding success varied between 0.68 and 0.71 chicks fledged per breeding pair per year and productivity was assessed at 0.57 chicks fledged per territorial pair in 2014/15. The main threats imposed by humans were poaching of eggs, chicks and collection of nest materials, leading to 20% (13 out of 64 breeding attempts) of nest failures over the two years. An additional important reason for nest failure was the pruning and (partial) cutting of nest trees. Despite this high level of human interference, we found that Hooded Vulture nest success increased with proximity to human settlements, probably because breeding vultures benefit from protection by people against persecution and disturbance.  相似文献   
13.
14.
The protective antigen (PA) is one of the three components of the anthrax toxin. It is a secreted nontoxic protein with a molecular weight of 83 kDa and is the major component of the currently licensed human vaccine for anthrax. Due to limitations found in the existing vaccine formulation, it has been proposed that genetically modified PA may be more effective as a vaccine. The expression and the stability of two recombinant PA (rPA) variants, PA-SNKE-ΔFF-E308D and PA-N657A, were studied. These proteins were expressed in the nonsporogenic avirulent strain BH445. Initial results indicated that PA-SNKE-ΔFF-E308D, which lacks two proteolysis-sensitive sites, is more stable than PA-N657A. Process development was conducted to establish an efficient production and purification process for PA-SNKE-ΔFF-E308D. pH, media composition, growth strategy and protease inhibitors composition were analyzed. The production process chosen was based on batch growth of B. anthracis using tryptone and yeast extract as the only source of carbon, pH control at 7.5, and antifoam 289. Optimal harvest time was 14–18 h after inoculation, and EDTA (5 mM) was added upon harvest for proteolysis control. Recovery of the rPA was performed by expanded-bed adsorption (EBA) on a hydrophobic interaction chromatography (HIC) resin, eliminating the need for centrifugation, microfiltration and diafiltration. The EBA step was followed by ion exchange and gel filtration. rPA yields before and after purification were 130 and 90 mg/l, respectively. The purified rPA, without further treatment, treated with small amounts of formalin or adsorbed on alum, induced, high levels of IgG anti-PA with neutralization activities. Journal of Industrial Microbiology & Biotechnology (2002) 28, 232–238 DOI: 10.1038/sj/jim/7000239 Received 28 August 2001/ Accepted in revised form 20 December 2001  相似文献   
15.
Lipoteichoic acids (LTA) are polymers of alternating units of a polyhydroxy alkane, including glycerol and ribitol, and phosphoric acid, joined to form phosphodiester units that are found in the envelope of Gram-positive bacteria. Here we review four different types of LTA that can be distinguished on the basis of their chemical structure and describe recent advances in the biosynthesis pathway for type I LTA, d-alanylated polyglycerol-phosphate linked to di-glucosyl-diacylglycerol. The physiological functions of type I LTA are discussed in the context of inhibitors that block their synthesis and of mutants with discrete synthesis defects. Research on LTA structure and function represents a large frontier that has been investigated in only few Gram-positive bacteria.  相似文献   
16.
The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion.  相似文献   
17.
Staphylococcus aureus infection is a frequent cause of sepsis in humans, a disease associated with high mortality and without specific intervention. When suspended in human or animal plasma, staphylococci are known to agglutinate, however the bacterial factors responsible for agglutination and their possible contribution to disease pathogenesis have not yet been revealed. Using a mouse model for S. aureus sepsis, we report here that staphylococcal agglutination in blood was associated with a lethal outcome of this disease. Three secreted products of staphylococci--coagulase (Coa), von Willebrand factor binding protein (vWbp) and clumping factor (ClfA)--were required for agglutination. Coa and vWbp activate prothrombin to cleave fibrinogen, whereas ClfA allowed staphylococci to associate with the resulting fibrin cables. All three virulence genes promoted the formation of thromboembolic lesions in heart tissues. S. aureus agglutination could be disrupted and the lethal outcome of sepsis could be prevented by combining dabigatran-etexilate treatment, which blocked Coa and vWbp activity, with antibodies specific for ClfA. Together these results suggest that the combined administration of direct thrombin inhibitors and ClfA-antibodies that block S. aureus agglutination with fibrin may be useful for the prevention of staphylococcal sepsis in humans.  相似文献   
18.
Bacterial dipeptide ABC transporters function to import a wide range of dipeptide substrates. This ability to transport a wide variety of dipeptides is conferred by the cognate substrate binding protein (SBP) of these transporters. SBPs bind dipeptides with little regard for their amino acid content. Here, we report the 1.7 A resolution structure of lipoprotein-9 (SA0422) of Staphylococcus aureus in complex with the dipeptide glycylmethionine. Experimental characterization of the subcellular location of the protein confirmed that SA0422 is an acylated, peripheral membrane protein. This is the first structure determined for an SBP of a Gram-positive dipeptide ABC transporter. Usually, binding of dipeptides occurs in a binding pocket that is largely hydrated and able to accommodate the side chains of several different amino acid residues. Unlike any other known SBP, lipoprotein-9 binds the side chains of the glycylmethionine dipeptide through very specific interactions. Lipoprotein-9 shares significant structural and sequence homology with the MetQ family of methionine SBP. Sequence comparisons between MetQ-like proteins and lipoprotein-9 suggest that the residues forming the tight interactions with the methionine side chains of the ligand are highly conserved between lipoprotein-9 and MetQ homologues, while the residues involved in coordinating the glycine residue are not. Modeling of the Vibrio cholerae MetQ and lipoprotein-9 binding pockets can account for lipoprotein-9 substrate specificity toward glycylmethionine. For this reason, we have designated lipoprotein-9 GmpC, for glycylmethionine binding protein.  相似文献   
19.
Bacillus anthracis, a spore forming Gram-positive microbe, is the causative agent of anthrax. Although plasmid encoded factors such as lethal toxin (LeTx), edema toxin (EdTx), and gamma-poly-d-glutamic acid (PGA) capsule are known to be required for disease pathogenesis, B. anthracis genes that enable spore invasion, phagosomal escape and macrophage replication are still unknown. To establish transposon mutagenesis as a tool for the characterization of anthrax genes, we employed the mariner-based mini-transposon Bursa aurealis in B. anthracis strain Sterne 7702. B. aurealis carrying an erythromycin resistance cassette and its cognate transposase were delivered by transformation of two plasmids. B. aurealis transposition can be selected for by temperature shift to prevent plasmid replication and by screening colonies for erythromycin resistance. Using inverse polymerase chain reaction, DNA fragments of 129 random erythromycin-resistant transposon mutants were amplified and submitted to DNA sequence analysis. These studies demonstrate that B. aurealis inserts randomly into the genome of B. anthracis and can therefore be employed for finding genes involved in virulence.  相似文献   
20.
Lipoteichoic acid (LTA), a glycerol phosphate polymer, is a component of the envelope of Gram-positive bacteria that has hitherto not been identified in Bacillus anthracis, the causative agent of anthrax. LTA synthesis in Staphylococcus aureus and other microbes is catalyzed by the product of the ltaS gene, a membrane protein that polymerizes polyglycerol phosphate from phosphatidyl glycerol. Here we identified four ltaS homologues, designated ltaS1 to -4, in the genome of Bacillus anthracis. Polyglycerol phosphate-specific monoclonal antibodies were used to detect LTA in the envelope of B. anthracis strain Sterne (pXO1(+) pXO2(-)) vegetative forms. B. anthracis mutants lacking ltaS1, ltaS2, ltaS3, or ltaS4 did not display defects in growth or LTA synthesis. In contrast, B. anthracis strains lacking both ltaS1 and ltaS2 were unable to synthesize LTA and exhibited reduced viability, altered envelope morphology, aberrant separation of vegetative forms, and decreased sporulation efficiency. Expression of ltaS1 or ltaS2 alone in B. anthracis as well as in other microbes was sufficient for polyglycerol phosphate synthesis. Thus, similar to S. aureus, B. anthracis employs LtaS enzymes to synthesize LTA, an envelope component that promotes bacterial growth and cell division.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号