首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   107篇
  2023年   2篇
  2022年   3篇
  2021年   17篇
  2020年   10篇
  2019年   4篇
  2018年   6篇
  2017年   5篇
  2016年   11篇
  2015年   29篇
  2014年   29篇
  2013年   35篇
  2012年   39篇
  2011年   36篇
  2010年   29篇
  2009年   23篇
  2008年   19篇
  2007年   18篇
  2006年   10篇
  2005年   23篇
  2004年   14篇
  2003年   15篇
  2002年   20篇
  2001年   12篇
  2000年   7篇
  1999年   10篇
  1998年   11篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1990年   5篇
  1989年   1篇
  1987年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有457条查询结果,搜索用时 625 毫秒
61.
62.
Applied Microbiology and Biotechnology - Iron exopolysaccharide nanoparticles were biogenerated during ferric citrate fermentation by Klebsiella oxytoca DSM 29614. Before investigating their...  相似文献   
63.
Infection with attenuated simian immunodeficiency virus (SIV) in rhesus macaques has been shown to raise antibodies capable of neutralizing an animal challenge stock of primary SIVmac251 in CEMx174 cells that correlate with resistance to infection after experimental challenge with this virulent virus (M. S. Wyand, K. H. Manson, M. Garcia-Moll, D. C. Montefiori, and R. C. Desrosiers, J. Virol. 70:3724–3733, 1996). Here we show that these neutralizing antibodies are not detected in human and rhesus peripheral blood mononuclear cells (PBMC). In addition, neutralization of primary SIVmac251 in human and rhesus PBMC was rarely detected with plasma samples from a similar group of animals that had been infected either with SIVmac239Δnef for 1.5 years or with SIVmac239Δ3 for 3.2 years, although low-level neutralization was detected in CEMx174 cells. Potent neutralization was detected in CEMx174 cells when the latter plasma samples were assessed with laboratory-adapted SIVmac251. In contrast to primary SIVmac251, laboratory-adapted SIVmac251 did not replicate in human and rhesus PBMC despite its ability to utilize CCR5, Bonzo/STRL33, and BOB/gpr15 as coreceptors for virus entry. These results illustrate the importance of virus passage history and the choice of indicator cells for making assessments of neutralizing antibodies to lentiviruses such as SIV. They also demonstrate that primary SIVmac251 is less sensitive to neutralization in human and rhesus PBMC than it is in established cell lines. Results obtained in PBMC did not support a role for neutralizing antibodies as a mechanism of protection in animals immunized with attenuated SIV and challenged with primary SIVmac251.  相似文献   
64.
Vaccine protection from infection and/or disease induced by highly pathogenic simian immunodeficiency virus (SIV) strain SIVmac251 in the rhesus macaque model is a challenging task. Thus far, the only approach that has been reported to protect a fraction of macaques from infection following intravenous challenge with SIVmac251 was the use of a live attenuated SIV vaccine. In the present study, the gag, pol, and env genes of SIVK6W were expressed in the NYVAC vector, a genetically engineered derivative of the vaccinia virus Copenhagen strain that displays a highly attenuated phenotype in humans. In addition, the genes for the α and β chains of interleukin-12 (IL-12), as well as the IL-2 gene, were expressed in separate NYVAC vectors and inoculated intramuscularly, in conjunction with or separate from the NYVAC-SIV vaccine, in 40 macaques. The overall cytotoxic T-lymphocyte (CTL) response was greater, at the expense of proliferative and humoral responses, in animals immunized with NYVAC-SIV and NYVAC–IL-12 than in animals immunized with the NYVAC-SIV vaccine alone. At the end of the immunization regimen, half of the animals were challenged with SIVmac251 by the intravenous route and the other half were exposed to SIVmac251 intrarectally. Significantly, five of the eleven vaccinees exposed mucosally to SIVmac251 showed a transient peak of viremia 1 week after viral challenge and subsequently appeared to clear viral infection. In contrast, all 12 animals inoculated intravenously became infected, but 5 to 6 months after viral challenge, 4 animals were able to control viral expression and appeared to progress to disease more slowly than control animals. Protection did not appear to be associated with any of the measured immunological parameters. Further modulation of immune responses by coadministration of NYVAC-cytokine recombinants did not appear to influence the outcome of viral challenge. The fact that the NYVAC-SIV recombinant vaccine appears to be effective per se in the animal model that best mirrors human AIDS supports the idea that the development of a highly attenuated poxvirus-based vaccine candidate can be a valuable approach to significantly decrease the spread of human immunodeficiency virus (HIV) infection by the mucosal route.  相似文献   
65.
Truffle (Tuber spp.) cultivation is based on raising mycorrhizal trees in greenhouses that have been inoculated with suspensions of ascospores. The problem with this is that pests, pathogens, and other mycorrhizal fungi can contaminate the trees. Furthermore, because ascospores are produced sexually, each plant potentially has a different genetic mycorrhizal makeup from each other so tailoring the mycorrhizal component of plants to suit a particular set of soil and climatic conditions is out of the question. Here, we report on the production of Tuber borchii-mycorrhized plants using pure cultures, establishing a truffière with these and subsequent production of its fruiting bodies. This study opens up the possibility of producing commercial numbers of Tuber-mycorrhized trees for truffle cultivation using mycelial inoculation techniques. It also poses questions about the mechanism of fertilization between the different strains which were located in different parts of the experimental truffière.  相似文献   
66.
Human immunodeficiency virus type 1 (HIV-1)-specific immune responses over the course of rapidly progressive infection are not well defined. Detailed longitudinal analyses of neutralizing antibodies, lymphocyte proliferation, in vivo-activated and memory cytotoxic T-lymphocyte (CTL) responses, and viral sequence variation were performed on a patient who presented with acute HIV-1 infection, developed an AIDS-defining illness 13 months later, and died 45 months after presentation. Neutralizing-antibody responses remained weak throughout, and no HIV-1-specific lymphocyte proliferative responses were seen even early in the disease course. Strong in vivo-activated CTL directed against Env and Pol epitopes were present at the time of the initial drop in viremia but were quickly lost. Memory CTL against Env and Pol epitopes were detected throughout the course of infection; however, these CTL were not activated in vivo. Despite an initially narrow CTL response, new epitopes were not targeted as the disease progressed. Viral sequencing showed the emergence of variants within the two targeted CTL epitopes; however, viral variants within the immunodominant Env epitope were well recognized by CTL, and there was no evidence of viral escape from immune system detection within this epitope. These data demonstrate a narrowly directed, static CTL response in a patient with rapidly progressive disease. We also show that disease progression can occur in the presence of persistent memory CTL recognition of autologous epitopes and in the absence of detectable escape from CTL responses, consistent with an in vivo defect in activation of CTL.  相似文献   
67.
We previously showed that envelope (gp160)-based vaccines, used in a live recombinant virus priming and subunit protein boosting regimen, protected macaques against intravenous and intrarectal challenges with the homologous simian immunodeficiency virus SIVmne clone E11S. However, the breadth of protection appears to be limited, since the vaccines were only partially effective against intravenous challenge by the uncloned SIVmne. To examine factors that could affect the breadth and the efficacy of this immunization approach, we studied (i) the effect of priming by recombinant vaccinia virus; (ii) the role of surface antigen gp130; and (iii) the role of core antigens (Gag and Pol) in eliciting protective immunity. Results indicate that (i) priming with recombinant vaccinia virus was more effective than subunit antigen in eliciting protective responses; (ii) while both gp130 and gp160 elicited similar levels of SIV-specific antibodies, gp130 was not as effective as gp160 in protection, indicating a possible role for the transmembrane protein in presenting functionally important epitopes; and (iii) although animals immunized with core antigens failed to generate any neutralizing antibody and were infected upon challenge, their virus load was 50- to 100-fold lower than that of the controls, suggesting the importance of cellular immunity or other core-specific immune responses in controlling acute infection. Complete protection against intravenous infection by the pathogenic uncloned SIVmne was achieved by immunization with both the envelope and the core antigens. These results indicate that immune responses to both antigens may contribute to protection and thus argue for the inclusion of multiple antigens in recombinant vaccine designs.  相似文献   
68.
BackgroundPeople infected with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) experience a wide range of clinical manifestations, from asymptomatic and mild illness to severe illness and death, influenced by age and a variety of comorbidities. Neutralizing antibodies (nAbs) are thought to be a primary immune defense against the virus. Large, diverse, well-characterized cohorts of convalescent individuals provide standardized values to benchmark nAb responses to past SARS-CoV-2 infection and define potentially protective levels of immunity.Methods and findingsThis analysis comprises an observational cohort of 329 HIV–seronegative adults in the United States (n = 167) and Peru (n = 162) convalescing from SARS-CoV-2 infection from May through October 2020. The mean age was 48 years (range 18 to 86), 54% of the cohort overall was Hispanic, and 34% identified as White. nAb titers were measured in serum by SARS-CoV-2.D614G Spike-pseudotyped virus infection of 293T/ACE2 cells. Multiple linear regression was applied to define associations between nAb titers and demographic variables, disease severity and time from infection or disease onset, and comorbidities within and across US and Peruvian cohorts over time. nAb titers peaked 28 to 42 days post-diagnosis and were higher in participants with a history of severe Coronavirus Disease 2019 (COVID-19) (p < 0.001). Diabetes, age >55 years, male sex assigned at birth, and, in some cases, body mass index were also independently associated with higher nAb titers, whereas hypertension was independently associated with lower nAb titers. nAb titers did not differ by race, underlying pulmonary disease or smoking. Two months post-enrollment, nAb ID50 (ID80) titers declined 3.5 (2.8)-fold overall. Study limitations in this observational, convalescent cohort include survivorship bias and missing early viral loads and acute immune responses to correlate with the convalescent responses we observed.ConclusionsIn summary, in our cohort, nAb titers after SARS-CoV-2 infection peaked approximately 1 month post-diagnosis and varied by age, sex assigned at birth, disease severity, and underlying comorbidities. Our data show great heterogeneity in nAb responses among people with recent COVID-19, highlighting the challenges of interpreting natural history studies and gauging responses to vaccines and therapeutics among people with recent infection. Our observations illuminate potential correlations of demographic and clinical characteristics with nAb responses, a key element for protection from COVID-19, thus informing development and implementation of preventative and therapeutic strategies globally.Trial registrationClinicalTrials.gov NCT04403880.

Shelly Karuna and co-workers study variations in neutralizing antibody responses after SARS-CoV-2 infection.  相似文献   
69.
p120-RasGAP (Ras GTPase activating protein) plays a key role in the regulation of Ras-GTP bound by promoting GTP hydrolysis via its C-terminal catalytic domain. The p120-RasGAP N-terminal part contains two SH2, SH3, PH (pleckstrin homology) and CaLB/C2 (calcium-dependent phospholipid-binding domain) domains. These protein domains allow various functions, such as anti-/pro-apoptosis, proliferation and also cell migration depending of their distinct partners. The p120-RasGAP domain participates in protein–protein interactions with Akt, Aurora or RhoGAP to regulate functions described bellow. Here, we summarize, in angiogenesis and cancer, the various functional roles played by p120-RasGAP domains and their effector partners in downstream signaling.  相似文献   
70.
Like human immunodeficiency virus type 1 (HIV-1), most simian immunodeficiency virus (SIV) strains use CCR5 to establish infection. However, while HIV-1 can acquire the ability to use CXCR4, SIVs that utilize CXCR4 have rarely been reported. To explore possible barriers against SIV coreceptor switching, we derived an R5X4 variant, termed 239-ST1, from the R5 clone SIVmac239 by serially passaging virus in CD4+ CXCR4+ CCR5 SupT1 cells. A 239-ST1 env clone, designated 239-ST1.2-32, used CXCR4 and CCR5 in cell-cell fusion and reporter virus infection assays and conferred the ability for rapid, cytopathic infection of SupT1 cells to SIVmac239. Viral replication was inhibitable by the CXCR4-specific antagonist AMD3100, and replication was abrogated in a novel CXCR4 SupT1 line. Surprisingly, parental SIVmac239 exhibited low-level replication in SupT1 cells that was not observed in CXCR4 SupT1 cells. Only two mutations in the 239-ST1.2-32 Env, K47E in the C1 domain and L328W in the V3 loop, were required for CXCR4 use in cell-cell fusion assays, although two other V3 changes, N316K and I324M, improved CXCR4 use in infection assays. An Env cytoplasmic tail truncation, acquired during propagation of 239-ST1 in SupT1 cells, was not required. Compared with SIVmac239, 239-ST1.2-32 was more sensitive to neutralization by five of seven serum and plasma samples from SIVmac239-infected rhesus macaques and was approximately 50-fold more sensitive to soluble CD4. Thus, SIVmac239 can acquire the ability to use CXCR4 with high efficiency, but the changes required for this phenotype may be distinct from those for HIV-1 CXCR4 use. This finding, along with the increased neutralization sensitivity of this CXCR4-using SIV, suggests a mechanism that could select strongly against this phenotype in vivo.Simian immunodeficiency viruses (SIVs) share many structural and biological features with human immunodeficiency virus (HIV), including target cell entry via interactions of the viral envelope glycoprotein (Env) with CD4 and a chemokine coreceptor. For HIV, the most important coreceptors in vivo are CCR5 (2, 13, 19, 21, 22) and CXCR4 (30). HIV type 1 (HIV-1) strains that use only CCR5 (R5 viruses) predominate during the early stages of infection and are critical for transmission (84, 90), as evidenced by the finding that individuals lacking a functional CCR5 protein due to a homozygous 32-bp deletion in the CCR5 gene (ccr532) are largely resistant to HIV-1 infection (16, 54, 82). Although R5 viruses generally persist in late-stage disease, viruses that can use CXCR4, either exclusively (X4 viruses) or in addition to CCR5 (R5X4 viruses), emerge in approximately 50% of subtype B-infected individuals (15, 43). This coreceptor switch is associated with a more rapid decline in peripheral blood CD4+ T cells and a faster progression to AIDS (15, 43, 77), although it is unclear if CXCR4-using viruses are a cause or a consequence of progressing immunodeficiency. Like HIV, the vast majority of SIVs use CCR5 to establish infection (11, 12, 45). However, although CXCR4-using SIVs have been reported (47, 52, 65, 68, 69), their occurrence is rare, especially in models of pathogenic infection, where only one CXCR4-using SIV has been identified (17, 60, 71).This paucity of CXCR4-using SIVs is surprising for several reasons. First, SIV Envs tend to be more promiscuous than HIV-1 Envs and frequently use alternative coreceptors in addition to CCR5, including GPR1, GPR15, CXCR6, and CCR8 (20, 27, 29, 80, 81, 92) but not CXCR4. Second, HIV-2, which is more closely related to SIVmac than to HIV-1 (56, 57), commonly uses CXCR4 in vitro and in vivo (3, 28, 33, 58, 59, 67). Third, rhesus CXCR4 is ∼98% identical to human CXCR4 in amino acid sequence and can function as a coreceptor for HIV-1 in vitro (12). Finally, chimeric simian-human immunodeficiency viruses (SHIVs) that contain X4 HIV Envs on an SIV core can replicate to high levels in vivo and cause disease in rhesus macaques (39, 86). Moreover, it was recently shown that coreceptor switching can occur in rhesus macaques infected with an R5 SHIV (35). Thus, there does not appear to be any block per se against the use of rhesus CXCR4 as an entry coreceptor either in vitro or in vivo, suggesting that SIV is less capable of adapting to use CXCR4 and/or that mutations required for CXCR4 utilization may lead to a virus that is less fit and/or more susceptible to immune control in this host.For HIV-1, the Env determinants for CXCR4 use have been well documented and often involve the acquisition of positively charged amino acids in the V3 loop (18, 32, 87), particularly at positions 11, 24, and 25 (6, 18, 31, 32, 38, 75). Although the SIVmac239 V3 loop is a critical determinant for Env-coreceptor interactions (44, 63, 72), attempts to create an X4 SIVmac239 by introducing positively charged residues into the V3 loop (63) or by inserting a V3 loop from X4 HIV-1 (44) have been unsuccessful. SIVmac155T3, the only CXCR4-using variant of SIVmac that has been identified to date, was isolated from a rhesus macaque with advanced disease and contains additional positively charged residues in V3, although the determinants for CXCR4 use have not been determined (60, 71).Given questions concerning the possible determinants for and/or barriers to coreceptor switching in SIV, we sought to derive a CXCR4-using variant of the well-characterized pathogenic R5 SIV clone SIVmac239. Here we show that SIVmac239 could indeed acquire CXCR4 utilization when it was adapted in vitro for high-efficiency replication in the CXCR4+ CCR5 human SupT1 cell line. An env clone from this virus could use CXCR4 in cell-cell fusion and reporter virus infection assays and conferred CXCR4 tropism to a replication-competent SIV. Although V3 mutations were important for CXCR4 use, an L328W change at the V3 crown rather than the acquisition of positively charged residues was required, as was an unusual K47E mutation in the conserved C1 domain of gp120. These changes also caused the highly neutralization-resistant SIVmac239 strain to become more neutralization sensitive to sera and plasmas from SIVmac239-infected animals, and particularly to soluble CD4. These results indicate that mutations distinct from those typically seen for HIV-1 may be required for SIVmac to gain CXCR4 utilization and suggest that these changes render this virus more susceptible to humoral immune control. Collectively, our findings indicate that there are likely to be strong viral and host selection pressures against CXCR4 use that may contribute to the paucity of X4 coreceptor switching for SIVmac in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号