首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   763篇
  免费   64篇
  2023年   3篇
  2022年   7篇
  2021年   10篇
  2020年   15篇
  2019年   15篇
  2018年   20篇
  2017年   16篇
  2016年   19篇
  2015年   42篇
  2014年   34篇
  2013年   57篇
  2012年   81篇
  2011年   59篇
  2010年   41篇
  2009年   36篇
  2008年   41篇
  2007年   42篇
  2006年   34篇
  2005年   28篇
  2004年   33篇
  2003年   33篇
  2002年   37篇
  2001年   11篇
  2000年   11篇
  1999年   10篇
  1998年   7篇
  1997年   8篇
  1996年   7篇
  1995年   7篇
  1994年   4篇
  1993年   1篇
  1992年   8篇
  1991年   9篇
  1990年   8篇
  1989年   4篇
  1988年   6篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
  1966年   1篇
  1962年   1篇
排序方式: 共有827条查询结果,搜索用时 31 毫秒
761.
Fundamental to the establishment of exotic species in natural environments is that the invader finds an appropriate niche in the novel environment. However, it is currently unclear whether this is achieved by competitively displacing native species from their niches and/or by exploiting niche opportunities not monopolized by native species. Combining phylogenetic analyses with field observations and an ecological opportunity experiment, we here contrasted the competition and niche opportunity hypotheses as explanations for the success of an alien passerine, the Red-billed Leiothrix Leiothrix lutea, in a forest reserve from the Western Mediterranean basin. The invasion of Leiothrix provided a rare opportunity to assess the relative importance of each hypothesis because the avian community of the reserve has been systematically surveyed for the last 27 years, and hence species abundance data were available before and after the irruption of the invader. The invader established itself with relatively little resistance or consequences for native species, reflecting the opportunist-generalist nature of both the invader and the invaded native community. Although we cannot completely discard a role of competition, these results yield greater support to the crucial importance of niche opportunities to invade natural environments.  相似文献   
762.
Proteins of the Hha/YmoA family co-regulate with H-NS the expression of virulence factors in Enterobacteriaceae. Vibrio cholerae lacks Hha-like proteins and its H-NS (vcH-NS) is unable to bind Hha, in spite of the conservation of a key residue for Hha binding by Escherichia coli H-NS (ecH-NS). Exchange of the residues in position 9 between vcH-NS and ecH-NS strongly reduces Hha binding by ecH-NS and introduces it in vcH-NS. These mutations strongly affect the repression of the hemolysin operon in E. coli and the electrophoretic mobility of complexes formed with a DNA fragment containing its regulatory region.  相似文献   
763.
We studied the effect of food concentration on the feeding and growth rates of different larval developmental stages of the spionid polychaete Polydora ciliata. We estimated larval feeding rates as a function of food abundance by incubation experiments with two different preys, presented separately, the cryptophyte Rhodomonas salina (ESD = 9.7 µm) and the diatom T.weissflogii (ESD = 12.9 µm). Additionally, we determined larval growth rates and gross growth efficiencies (GGE) as a function of R. salina concentration.P.ciliata larvae exhibited a type II functional response. Clearance rates decreased continuously with increasing food concentration, and ingestion rates increased up to a food saturation concentration above which ingestion remained fairly constant. The food concentration at which feeding became saturated varied depending on the food type, from ca. 2 µg C mL− 1 when feeding on T. weissflogii to ca. 5 µg C mL− 1 when feeding on R. salina. The maximum carbon specific ingestion rates were very similar for both prey types and decreased with increasing larval size/age, from 0.67 d− 1 for early larvae to 0.45 d− 1 for late stage larvae. Growth rates as a function of food concentration (R. salina) followed a saturation curve; the maximum specific growth rate decreased slightly during larval development from 0.22 to 0.17 d− 1. Maximum growth rates were reached at food concentrations ranging from 2.5 to 1.4 µg C mL− 1 depending on larval size. The GGE, estimated as the slope of the regression equations relating specific growth rates versus specific ingestion rates, were 0.29 and 0.16 for early and intermediate larvae, respectively. The GGE, calculated specifically for each food level, decreased as the food concentration increased, from 0.53 to 0.33 for early larvae and from 0.27 to 0.20 for intermediate larval stages.From an ecological perspective, we suggest that there is a trade-off between larval feeding/growth kinetics and larval dispersal. Natural selection may favor that some meroplanktonic larvae, such as P.ciliata, present low filtration efficiency and low growth rates despite inhabiting environments with high food availability. This larval performance allows a planktonic development sufficiently long to ensure efficient larval dispersion.  相似文献   
764.
765.
766.

Background

The UVB component of solar ultraviolet irradiation is one of the major risk factors for the development of skin cancer in humans. UVB exposure elicits an increased generation of reactive oxygen species (ROS), which are responsible for oxidative damage to proteins, DNA, RNA and lipids. In order to examine the biological impact of UVB irradiation on skin cells, we used a parallel proteomics approach to analyze the protein expression profile and to identify oxidatively modified proteins in normal human epithelial keratinocytes.

Results

The expression levels of fifteen proteins - involved in maintaining the cytoskeleton integrity, removal of damaged proteins and heat shock response - were differentially regulated in UVB-exposed cells, indicating that an appropriate response is developed in order to counteract/neutralize the toxic effects of UVB-raised ROS. On the other side, the redox proteomics approach revealed that seven proteins - involved in cellular adhesion, cell-cell interaction and protein folding - were selectively oxidized.

Conclusions

Despite a wide and well orchestrated cellular response, a relevant oxidation of specific proteins concomitantly occurs in UVB-irradiated human epithelial Keratinocytes. These modified (i.e. likely dysfunctional) proteins might result in cell homeostasis impairment and therefore eventually promote cellular degeneration, senescence or carcinogenesis.  相似文献   
767.
768.
Control of cell cycle progression by stress-activated protein kinases (SAPKs) is essential for cell adaptation to extracellular stimuli. Exposure of yeast to osmostress leads to activation of the Hog1 SAPK, which controls cell cycle at G1 by the targeting of Sic1. Here, we show that survival to osmostress also requires regulation of G2 progression. Activated Hog1 interacts and directly phosphorylates a residue within the Hsl7-docking site of the Hsl1 checkpoint kinase, which results in delocalization of Hsl7 from the septin ring and leads to Swe1 accumulation. Upon Hog1 activation, cells containing a nonphosphorylatable Hsl1 by Hog1 are unable to promote Hsl7 delocalization, fail to arrest at G2 and become sensitive to osmostress. Together, we present a novel mechanism that regulates the Hsl1-Hsl7 complex to integrate stress signals to mediate cell cycle arrest and, demonstrate that a single MAPK coordinately modulates different cell cycle checkpoints to improve cell survival upon stress.  相似文献   
769.
The chitin and astaxanthin recoveries by lactic acid fermentation of shrimp wastes (Litopenaeus sp) were conducted in bed-column reactors at 15, 20, 25, 30, 35, 40 and 45 °C. The response surface methodology showed that the fermentations carried out in the 27–36 °C temperature range with lactic acid above 0.319 mmol/g resulted in the highest demineralization. The maximal deproteinizations were attained from 30 to 40 °C. The extraction of free-astaxanthin did not present significant differences between 20 and 35 °C and the proportion of cis-stereoisomer forms increased with temperature. The growth rates of Lactobacillus plantarum were estimated in the 15–45 °C range and analyzed by Arrhenius and square root models. The cardinal values were 3.94 and 51.7 °C for minimum and maximum temperatures, respectively, with activation energy of 43.38 Jmol−1.  相似文献   
770.
Tyrosinase catalyzes the ortho hydroxylation of monophenols and the subsequent oxidation of the diphenolic products to the resulting quinones. In efforts to create biomimetic copper complexes that can oxidize C–H bonds, Stack and coworkers recently reported a synthetic μ-η22-peroxodicopper(II)(DBED)2 complex (DBED is N,N′-di-tert-butylethylenediamine), which rapidly hydroxylates phenolates. A reactive intermediate consistent with a bis-μ-oxo-dicopper(III)-phenolate complex, with the O–O bond fully cleaved, is observed experimentally. Overall, the evidence for sequential O–O bond cleavage and C–O bond formation in this synthetic complex suggests an alternative mechanism to the concerted or late-stage O–O bond scission generally accepted for the phenol hydroxylation reaction performed by tyrosinase. In this work, the reaction mechanism of this peroxodicopper(II) complex was studied with hybrid density functional methods by replacing DBED in the μ-η22-peroxodicopper(II)(DBED)2 complex by N,N′-dimethylethylenediamine ligands to reduce the computational costs. The reaction mechanism obtained is compared with the existing proposals for the catalytic ortho hydroxylation of monophenol and the subsequent oxidation of the diphenolic product to the resulting quinone with the aim of gaining some understanding about the copper-promoted oxidation processes mediated by 2:1 Cu(I)O2-derived species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号