首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4978篇
  免费   467篇
  国内免费   358篇
  2024年   14篇
  2023年   73篇
  2022年   75篇
  2021年   255篇
  2020年   182篇
  2019年   256篇
  2018年   232篇
  2017年   142篇
  2016年   248篇
  2015年   367篇
  2014年   371篇
  2013年   380篇
  2012年   453篇
  2011年   387篇
  2010年   276篇
  2009年   246篇
  2008年   273篇
  2007年   237篇
  2006年   204篇
  2005年   146篇
  2004年   136篇
  2003年   135篇
  2002年   102篇
  2001年   91篇
  2000年   61篇
  1999年   77篇
  1998年   47篇
  1997年   38篇
  1996年   47篇
  1995年   31篇
  1994年   29篇
  1993年   33篇
  1992年   34篇
  1991年   30篇
  1990年   26篇
  1989年   11篇
  1988年   17篇
  1987年   10篇
  1986年   7篇
  1985年   11篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1976年   1篇
排序方式: 共有5803条查询结果,搜索用时 234 毫秒
101.
Analysis of genetic diversity and population structure among Quercus fabri populations is essential for the conservation and utilization of Q. fabri resources. Here, the genetic diversity and structure of 158 individuals from 13 natural populations of Quercus fabri in China were analyzed using genotyping‐by‐sequencing (GBS). A total of 459,564 high‐quality single nucleotide polymorphisms (SNPs) were obtained after filtration for subsequent analysis. Genetic structure analysis revealed that these individuals can be clustered into two groups and the structure can be explained mainly by the geographic barrier, showed gene introgression from coastal to inland areas and high mountains could significantly hinder the mutual introgression of genes. Genetic diversity analysis indicated that the individual differences within groups are greater than the differences between the two groups. These results will help us better understand the genetic backgrounds of Q. fabri.  相似文献   
102.
Nitrogen (N) is one of the most important factors limiting plant productivity, and N fixation by legume species is an important source of N input into ecosystems. Meanwhile, N resorption from senescent plant tissues conserves nutrients taken up in the current season, which may alleviate ecosystem N limitation. N fixation was assessed by the 15N dilution technique in four types of alpine grasslands along the precipitation and soil nutrient gradients. The N resorption efficiency (NRE) was also measured in these alpine grasslands. The aboveground biomass in the alpine meadow was 4–6 times higher than in the alpine meadow steppe, alpine steppe, and alpine desert steppe. However, the proportion of legume species to community biomass in the alpine steppe and the alpine desert steppe was significantly higher than the proportion in the alpine meadow. N fixation by the legume plants in the alpine meadow was 0.236 g N/m2, which was significantly higher than N fixation in other alpine grasslands (0.041 to 0.089 g N/m2). The NRE in the alpine meadows was lower than in the other three alpine grasslands. Both the aboveground biomass and N fixation of the legume plants showed decreasing trends with the decline of precipitation and soil N gradients from east to west, while the NRE of alpine plants showed increasing trends along the gradients, which indicates that alpine plants enhance the NRE to adapt to the increasing droughts and nutrient‐poor environments. The opposite trends of N fixation and NRE along the precipitation and soil nutrient gradients indicate that alpine plants adapt to precipitation and soil nutrient limitation by promoting NRE (conservative nutrient use by alpine plants) rather than biological N fixation (open sources by legume plants) on the north Tibetan Plateau.  相似文献   
103.
Periodic climatic oscillations and species dispersal during the postglacial period are two important causes of plant assemblage and distribution on the Qinghai‐Tibet Plateau (QTP). To improve our understanding of the bio‐geological histories of shrub communities on the QTP, we tested two hypotheses. First, the intensity of climatic oscillations played a filtering role during community structuring. Second, species dispersal during the postglacial period contributed to the recovery of species and phylogenetic diversity and the emergence of phylogenetic overdispersion. To test these hypotheses, we investigated and compared the shrub communities in the alpine and desert habitats of the northeastern QTP. Notably, we observed higher levels of species and phylogenetic diversity in the alpine habitat than in the desert habitat, leading to phylogenetic overdispersion in the alpine shrub communities versus phylogenetic clustering in the desert shrub communities. This phylogenetic overdispersion increased with greater climate anomalies. These results suggest that (a) although climate anomalies strongly affect shrub communities, these phenomena do not act as a filter for shrub community structuring, and (b) species dispersal increases phylogenetic diversity and overdispersion in a community. Moreover, our investigation of the phylogenetic community composition revealed a larger number of plant clades in the alpine shrub communities than in the desert shrub communities, which provided insights into plant clade‐level differences in the phylogenetic structures of alpine and desert shrub communities in the northeastern QTP.  相似文献   
104.
采用“放松分子钟”模型、氨基酸位点正选择模型和分子内共进化网络估算方法,对蕨类植物Ⅱ型内含子成熟酶蛋白K(Maturase K,MATK)编码基因matK的进化趋势进行研究。结果显示:matK基因在蕨类植物系统学研究中具有一定的应用价值,与rbcL基因和psaA基因联合后能显著提升系统发育树的可信度;蕨类植物MATK蛋白中存在少数曾经历正选择的位点;MATK蛋白内部有多对氨基酸位点共同构成共进化网络。在被子植物兴起环境改变后,MATK蛋白部分位点发生适应性进化,通过位点间共进化网络协同作用方式提升蕨类植物对新光合环境的适应能力。  相似文献   
105.
Objective: The traditional Chinese medicine Caulis Sargentodoxae is widely used in the treatment of ulcerative colitis (UC), but the mechanism remains unknown. The present study aims to reveal its effective components, targets and pathways through network pharmacology and bioinformatics approaches.Materials and methods: Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to identify effective components. The ligand-based targets prediction was achieved through SwissTargetPrediction and TargetNet. UC-related targets were identified using Gene Expression Omnibus (GEO) data and DisGeNET. The common targets of disease and components were constructed and analyzed by PPI network. Lastly, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses are used to explain the functions of these common targets. Components-Targets-Pathways network was visualized and analyzed to further reveal the connection between the components and targets.Results: Eight active components and 102 key targets were identified to play an important role in UC. These targets were related to regulation of protein serine/threonine kinase activity, positive regulation of cell motility, response to molecule of bacterial origin, response to toxic substance, ERK1 and ERK2 cascade, peptidyl-tyrosine modification, inositol lipid-mediated signaling, cellular response to drug, regulation of inflammatory response and leukocyte migration. Moreover, HIF-1 signaling pathway and PI3K-Akt signaling pathway were the key targets involved in UC-related signaling pathways.Conclusion: The eight active components of Caulis Sargentodoxae mainly play a therapeutic role for UC through synergistic regulation of HIF-1 signaling pathway and PI3K-Akt signaling pathway.  相似文献   
106.
Radiation-induced hair cell injury is detrimental for human health but the underlying mechanism is not clear. MicroRNAs (miRNAs) have critical roles in various types of cellular biological processes. The present study investigated the role of miR-222 in the regulation of ionizing radiation (IR)-induced cell injury in auditory cells and its underlying mechanism. Real-time PCR was performed to identify the expression profile of miR-222 in the cochlea hair cell line HEI-OC1 after IR exposure. miRNA mimics or inhibitor-mediated up- or down-regulation of indicated miRNA was applied to characterize the biological effects of miR-222 using MTT, apoptosis and DNA damage assay. Bioinformatics analyses and luciferase reporter assays were applied to identify an miRNA target gene. Our study confirmed that IR treatment significantly suppressed miR-222 levels in a dose-dependent manner. Up-regulation of miR-222 enhances cell viability and alleviated IR-induced apoptosis and DNA damage in HEI-OC1 cells. In addition, BCL-2-like protein 11 (BCL2L11) was validated as a direct target of miR-222. Overexpression of BCL2L11 abolished the protective effects of miR-222 in IR-treated HEI-OC1 cells. Moreover, miR-222 alleviated IR-induced apoptosis and DNA damage by directly targeting BCL2L11. The present study demonstrates that miR-222 exhibits protective effects against irradiation-induced cell injury by directly targeting BCL2L11 in cochlear cells.  相似文献   
107.
108.
Wang  Han  Shen  Yi-Jia  Li  Xiu-Juan  Xia  Jun  Sun  Li  Xu  Yehao  Ma  Yu  Li  Dai  Xiong  Yuan-Chang 《Neurochemical research》2021,46(5):1214-1223
Neurochemical Research - Paclitaxel is a common chemotherapeutic agent in cancer treatment, while it often causes chemotherapy-induced peripheral neuropathy (CIPN), which...  相似文献   
109.
Journal of Plant Growth Regulation - Gibberellins (GAs) are a group of plant hormones that play important roles in various processes. Previous studies demonstrated that GA can increase the...  相似文献   
110.
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with unclear pathogenesis. We previously reported that syngenetic, activated lymphocyte-derived DNA (ALD-DNA) could robustly elicit macrophage activation, which plays an important role in the pathogenesis of murine lupus nephritis. In addition, extracellular HMGB1 obviously facilitated the accumulation of ALD-DNA in endosomes and promoted macrophage inflammation. While the detailed mechanism was still unknown. In this study, we found that HMGB1 could obviously change the DNA uptake pathways in macrophages. ALD-DNA alone was mainly uptake by the low efficient and unselective macropinocytosis, while extracellular HMGB1 potently promoted the more efficient and specific clathrin-/caveolin-1-dependent receptor-mediated endocytosis pathways, and led to the rapid and abundant aggregation of ALD-DNA in endosomes. This effect relied on the DNA binding ability and TLR2/TLR4 of HMGB1. Our study not only helped us to understand the promotion mechanisms of extracellular HMGB1 on ALD-DNA-induced macrophage inflammation, but also provided some clues to the pathogenesis of SLE.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号