首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   4篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   8篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
  1988年   1篇
  1986年   1篇
  1979年   1篇
  1971年   1篇
  1928年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
51.
Polarization sensitivity (PS), which arises from the orthogonal arrangement of microvilli in the retina, has long been known in shallow-water cephalopods. Micrographs presented herein signify that some deep-water cephalopods may also possess PS. Precise measurements of the angles of microvilli in the retinas of shallow-water octopus, squid and cuttlefish revealed neuroanatomical differences that may explain variation in the limits of polarization angular discrimination in different species and habitats. A question yet unanswered is whether cephalopods can discriminate between polarization and intensity. Recent behavioral experimentation has illustrated that one clear function of PS is enhanced predation: it enables better detection of transparent, opaque, or silvery-reflecting prey. The use of PS for navigation in cephalopods is still controversial, and our recent experiment on squids failed to support this notion. It is possible that cephalopods show polarization patterning produced in their skin as a mode of communication that cannot be detected by polarization-insensitive predators such as many fishes and marine mammals.  相似文献   
52.
A UV reactor with an annular design, a total liquid volume of 460[emsp4 ]ml, and outfitted with a single lamp with 1690[emsp4 ]mW of germicidal power was tested. Coliphage MS2 was used as a bioactinometer to measure the UV dose at a flow rate of 56.7[emsp4 ]ml/sec in water with a very low absorbance. The Beers Law coefficient was A100.003. The measured dose (MS2 bioactinometry) was 35.2±1.1[emsp4 ]mW-sec/cm2.A retention time distribution was generated with a dye tracer study. The reactor was modeled as if flow was confined to ten equal volume paths existing as concentric rings around the lamp. The UV intensity along each path (ith intensity) was calculated to generate a simulated distribution of UV intensity in the reactor. The retention time distribution was subdivided to estimate the retention time associated with each decile jth time) of the total flow.Seven methods of associating the ith intensity with the jth retention time were used to produce simulated dose distributions for the reactor. The average UV dose for each distribution was calculated as the average of the products of I and t (AP protocol) and by the apparent survival (AS protocol), in which the predicted survival along each path was averaged to back-calculate dose from the reference batch inactivation curve. The average dose predicted assuming that time and intensity were independent was 51.5[emsp4 ]mW-sec/cm2 based on the arithmetic average (AP protocol). Using the apparent survival method, the predicted dose for the independent distribution (I independent of t) was 36.4[emsp4 ]mW-sec/cm2. Three methods of developing dependent structure between time and intensity were tested. In the best possible case for stratified flow (I negatively correlated with t) the calculated (AS) intensity was 46.3[emsp4 ]mW-sec/cm2. In the worst case for stratified flow (I positively correlated with t) the AS intensity was 32.0[emsp4 ]mW-sec/cm2. In a rational case where flows were assumed to be distributed parabolically (low flow at the wall and at the lamp) produced an AS intensity of 37.7[emsp4 ]mW-sec/cm2. When either time or intensity was averaged, while the other variable was allowed to keep its distribution, the (AS) dose (time averaged 43.3[emsp4 ]mW-sec/cm2, intensity averaged 41.0[emsp4 ]mW-sec/cm2), yielded a poor prediction compared to the measured value.The errors associated with averaging time, intensity, or both, far outweigh the errors associated with choosing a rational distribution or an independent distribution of time and intensity in the prediction. This observation is generally true whenever an organism is exposed to UV light in a flow through reactor such that the range of doses is within the portion of the inactivation curve exhibiting strong exponential decay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号