首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1497篇
  免费   99篇
  2023年   2篇
  2022年   8篇
  2021年   28篇
  2020年   13篇
  2019年   18篇
  2018年   21篇
  2017年   22篇
  2016年   32篇
  2015年   66篇
  2014年   81篇
  2013年   91篇
  2012年   135篇
  2011年   133篇
  2010年   92篇
  2009年   82篇
  2008年   95篇
  2007年   102篇
  2006年   95篇
  2005年   63篇
  2004年   80篇
  2003年   71篇
  2002年   63篇
  2001年   14篇
  2000年   9篇
  1999年   11篇
  1998年   26篇
  1997年   5篇
  1996年   18篇
  1995年   15篇
  1994年   14篇
  1993年   18篇
  1992年   5篇
  1991年   6篇
  1990年   6篇
  1989年   8篇
  1988年   11篇
  1987年   3篇
  1986年   1篇
  1985年   9篇
  1984年   3篇
  1983年   10篇
  1982年   4篇
  1980年   1篇
  1979年   4篇
  1972年   1篇
  1970年   1篇
排序方式: 共有1596条查询结果,搜索用时 15 毫秒
31.

Background

A substantial increase in transportation of goods on railway may be hindered by public fear of increased vibration and noise leading to annoyance and sleep disturbance. As the majority of freight trains run during night time, the impact upon sleep is expected to be the most serious adverse effect. The impact of nocturnal vibration on sleep is an area currently lacking in knowledge. We experimentally investigated sleep disturbance with the aim to ascertain the impact of increasing vibration amplitude.

Methodology/Principal Findings

The impacts of various amplitudes of horizontal vibrations on sleep disturbance and heart rate were investigated in a laboratory study. Cardiac accelerations were assessed using a combination of polysomnography and ECG recordings. Sleep was assessed subjectively using questionnaires. Twelve young, healthy subjects slept for six nights in the sleep laboratory, with one habituation night, one control night and four nights with a variation of vibration exposures whilst maintaining the same noise exposure. With increasing vibration amplitude, we found a decrease in latency and increase in amplitude of heart rate as well as a reduction in sleep quality and increase in sleep disturbance.

Conclusions/Significance

We concluded that nocturnal vibration has a negative impact on sleep and that the impact increases with greater vibration amplitude. Sleep disturbance has short- and long-term health consequences. Therefore, it is necessary to define levels that protect residents against sleep disruptive vibrations that may arise from night time railway freight traffic.  相似文献   
32.

Glycosaminoglycans (GAGs) are major components of cartilage extracellular matrix (ECM), which play an important role in tissue homeostasis not only by providing mechanical load resistance, but also as signaling mediators of key cellular processes such as adhesion, migration, proliferation and differentiation. Specific GAG types as well as their disaccharide sulfation patterns can be predictive of the tissue maturation level but also of disease states such as osteoarthritis. In this work, we used a highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to perform a comparative study in terms of temporal changes in GAG and disaccharide composition between tissues generated from human bone marrow- and synovial-derived mesenchymal stem/stromal cells (hBMSC/hSMSC) after chondrogenic differentiation under normoxic (21% O2) and hypoxic (5% O2) micromass cultures. The chondrogenic differentiation of hBMSC/hSMSC cultured under different oxygen tensions was assessed through aggregate size measurement, chondrogenic gene expression analysis and histological/immunofluorescence staining in comparison to human chondrocytes. For all the studied conditions, the compositional analysis demonstrated a notable increase in the average relative percentage of chondroitin sulfate (CS), the main GAG in cartilage composition, throughout MSC chondrogenic differentiation. Additionally, hypoxic culture conditions resulted in significantly different average GAG and CS disaccharide percentage compositions compared to the normoxic ones. However, such effect was considerably more evident for hBMSC-derived chondrogenic aggregates. In summary, the GAG profiles described here may provide new insights for the prediction of cartilage tissue differentiation/disease states and to characterize the quality of MSC-generated chondrocytes obtained under different oxygen tension culture conditions.

  相似文献   
33.
Four forms of short neuropeptide F (sNPF1–4), derived from the gene snpf, have been identified in Drosophila and are known to act on a single G-protein-coupled receptor (sNPFR). Several functions have been suggested for sNPFs in Drosophila, including the regulation of feeding and growth in larvae, the control of insulin signalling and the modulation of neuronal circuits in adult flies. Furthermore, sNPF has been shown to act as a nutritional state-dependent neuromodulator in the olfactory system. The role of sNPF in the larval nervous system is less well known. To analyse sites of action of sNPF in the larva, we mapped the distribution of sNPF- and sNPFR-expressing neurons. In particular, we studied circuits associated with chemosensory inputs and systems involved in the regulation of feeding, including neurosecretory cell systems and the hypocerebral ganglion. We employed a combination of immunocytochemistry and enhancer trap and promoter Gal4 lines to drive green fluorescent protein. We found a good match between the distribution of the receptor and its ligand. However, several differences between the larval and adult systems were observed. Thus, neither sNPF nor its receptor was found in the olfactory (or other sensory) systems in the larva and cells producing insulin-like peptides did not co-express sNPFR, as opposed to results from adults. Moreover, sNPF was expressed in a subpopulation of Hugin cells (second-order gustatory neurons) only in adult flies. We propose that the differences in sNPF signalling between the developmental stages is explained by differences in their feeding behaviour.  相似文献   
34.
The intercellular transfer of misfolded proteins has received increasing attention in various neurodegenerative diseases characterized by the aggregation of specific proteins, as observed in Alzheimer’s, Parkinson’s and Huntington’s disease. One hypothesis holds that intercellular dissemination of these aggregates within the central nervous system results in the seeded assembly of the cognate soluble protein in target cells, similar to that proposed for transmissible prion diseases. The molecular mechanisms underlying the intercellular transfer of these proteinaceous aggregates are poorly understood. Various transfer modes of misfolded proteins including continuous cell-cell contacts such as nanotubes, unconventional secretion or microvesicle/exosome-associated dissemination have been suggested. Cells can release proteins, lipids and nucleic acids by vesicular exocytosis pathways destined for horizontal transfer. Encapsulation into microvesicular/exosomal vehicles not only protects these molecules from degradation and dilution in the extracellular space but also facilitates delivery over large distances, e.g. within the blood flow or interstitial fluid. Specific surface ligands might allow the highly efficient and targeted uptake of these vesicles by recipient cells. In this review, we focus on the cell biology and function of neuronal microvesicles/exosomes and discuss the evidence for pathogenic intercellular protein transfer mediated by vesicular carriers.  相似文献   
35.
A novel, non-toxic strategy to combat marine biofouling is presented. The technology is paint with additions of up to 43% of industrial protein. Through microbial degradation of the protein component, an oxygen-depleted layer rapidly forms in a 0.2 mm layer close to the paint surface. With the present paint formulations, a stable, O2-depleted layer can persist for 16 weeks. Barnacle larvae (cyprids) did not settle on panels where oxygen saturation was <20%, and cyprids were killed when exposed to O2-free water for more than 1 h. It is also shown that the O2-depleted layer will rapidly reform (within 15 min) after exposure to turbulent flow. Field exposure of panels for 16 weeks showed that paint with protein reduced fouling by barnacles and bryozoans by 80% and close to 100%, respectively. The results suggest that this novel technology may be developed into a non-toxic alternative to copper-based antifouling paints, especially for pleasure boats in sensitive environments. There is clearly potential for further development of the paint formulation, and a full-scale test on a boat-hull suggested that service-life under realistic operations needs to be improved.  相似文献   
36.
Apolipoproteins (apo) C-I and C-III are known to inhibit lipoprotein lipase (LPL) activity, but the molecular mechanisms for this remain obscure. We present evidence that either apoC-I or apoC-III, when bound to triglyceride-rich lipoproteins, prevent binding of LPL to the lipid/water interface. This results in decreased lipolytic activity of the enzyme. Site-directed mutagenesis revealed that hydrophobic amino acid residues centrally located in the apoC-III molecule are critical for attachment to lipid emulsion particles and consequently inhibition of LPL activity. Triglyceride-rich lipoproteins stabilize LPL and protect the enzyme from inactivating factors such as angiopoietin-like protein 4 (angptl4). The addition of either apoC-I or apoC-III to triglyceride-rich particles severely diminished their protective effect on LPL and rendered the enzyme more susceptible to inactivation by angptl4. These observations were seen using chylomicrons as well as the synthetic lipid emulsion Intralipid. In the presence of the LPL activator protein apoC-II, more of apoC-I or apoC-III was needed for displacement of LPL from the lipid/water interface. In conclusion, we show that apoC-I and apoC-III inhibit lipolysis by displacing LPL from lipid emulsion particles. We also propose a role for these apolipoproteins in the irreversible inactivation of LPL by factors such as angptl4.  相似文献   
37.
38.
39.
Ancient DNA analyses have provided enhanced resolution of population histories in many Pleistocene taxa. However, most studies are spatially restricted, making inference of species-level biogeographic histories difficult. Here, we analyse mitochondrial DNA (mtDNA) variation in the woolly mammoth from across its Holarctic range to reconstruct its history over the last 200 thousand years (kyr). We identify a previously undocumented major mtDNA lineage in Europe, which was replaced by another major mtDNA lineage 32–34 kyr before present (BP). Coalescent simulations provide support for demographic expansions at approximately 121 kyr BP, suggesting that the previous interglacial was an important driver for demography and intraspecific genetic divergence. Furthermore, our results suggest an expansion into Eurasia from America around 66 kyr BP, coinciding with the first exposure of the Bering Land Bridge during the Late Pleistocene. Bayesian inference indicates Late Pleistocene demographic stability until 20–15 kyr BP, when a severe population size decline occurred.  相似文献   
40.
Activated dynamics plays a central role in protein function, where transitions between distinct conformations often underlie the switching between active and inactive states. The characteristic time scales of these transitions typically fall in the microsecond to millisecond range, which is amenable to investigations by NMR relaxation dispersion experiments. Processes at the faster end of this range are more challenging to study, because higher RF field strengths are required to achieve refocusing of the exchanging magnetization. Here we describe a rotating-frame relaxation dispersion experiment for 1H spins in methyl 13CHD2 groups, which improves the characterization of fast exchange processes. The influence of 1H–1H rotating-frame nuclear Overhauser effects (ROE) is shown to be negligible, based on a comparison of R 1ρ relaxation data acquired with tilt angles of 90° and 35°, in which the ROE is maximal and minimal, respectively, and on samples containing different 1H densities surrounding the monitored methyl groups. The method was applied to ubiquitin and the apo form of calmodulin. We find that ubiquitin does not exhibit any 1H relaxation dispersion of its methyl groups at 10 or 25 °C. By contrast, calmodulin shows significant conformational exchange of the methionine methyl groups in its C-terminal domain, as previously demonstrated by 1H and 13C CPMG experiments. The present R 1ρ experiment extends the relaxation dispersion profile towards higher refocusing frequencies, which improves the definition of the exchange correlation time, compared to previous results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号