首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   898篇
  免费   53篇
  2023年   2篇
  2022年   3篇
  2021年   12篇
  2020年   6篇
  2019年   9篇
  2018年   20篇
  2017年   19篇
  2016年   22篇
  2015年   43篇
  2014年   36篇
  2013年   70篇
  2012年   58篇
  2011年   77篇
  2010年   48篇
  2009年   40篇
  2008年   55篇
  2007年   60篇
  2006年   63篇
  2005年   59篇
  2004年   64篇
  2003年   59篇
  2002年   49篇
  2001年   8篇
  2000年   7篇
  1999年   5篇
  1998年   8篇
  1997年   6篇
  1996年   6篇
  1995年   10篇
  1994年   6篇
  1993年   9篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1981年   1篇
  1973年   1篇
排序方式: 共有951条查询结果,搜索用时 46 毫秒
61.
Improving quality of life has been recognized as an important outcome for schizophrenia treatment, although the fundamental determinants are not well understood. In this study, we investigated the association between brain structural abnormalities and objective quality of life in schizophrenia patients. Thirty-three schizophrenia patients and 42 age-, sex-, and education-matched healthy participants underwent magnetic resonance imaging. The Quality of Life Scale was used to measure objective quality of life in schizophrenia patients. Voxel-based morphometry was performed to identify regional brain alterations that correlate with Quality of Life Scale score in the patient group. Schizophrenia patients showed gray matter reductions in the frontal, temporal, limbic, and subcortical regions. We then performed voxel-based multiple regression analysis in these regions to identify any correlations between regional gray matter volume and Quality of Life Scale scores. We found that among four subcategories of the scale, the Instrumental Role category score correlated with gray matter volume in the right anterior insula in schizophrenia patients. In addition, this correlation was shown to be mediated by negative symptoms. Our findings suggest that the neural basis of objective quality of life might differ topographically from that of subjective QOL in schizophrenia.  相似文献   
62.
Congenital stationary night blindness (CSNB) is a non-progressive, clinically and genetically heterogeneous disease of impaired night vision. We report a naturally-occurring, stationary, autosomal recessive phenotype in beagle dogs with normal daylight vision but absent night vision. Affected dogs had normal retinas on clinical examination, but showed no detectable rod responses. They had “negative-type” mixed rod and cone responses in full-field ERGs. Their photopic long-flash ERGs had normal OFF-responses associated with severely reduced ON-responses. The phenotype is similar to the Schubert-Bornschein form of complete CSNB in humans. Homozygosity mapping ruled out most known CSNB candidates as well as CACNA2D4 and GNB3. Three remaining genes were excluded based on sequencing the open reading frame and intron-exon boundaries (RHO, NYX), causal to a different form of CSNB (RHO) or X-chromosome (NYX, CACNA1F) location. Among the genes expressed in the photoreceptors and their synaptic terminals, and mGluR6 cascade and modulators, reduced expression of GNAT1, CACNA2D4 and NYX was observed by qRT-PCR in both carrier (n = 2) and affected (n = 2) retinas whereas CACNA1F was down-regulated only in the affecteds. Retinal morphology revealed normal cellular layers and structure, and electron microscopy showed normal rod spherules and synaptic ribbons. No difference from normal was observed by immunohistochemistry (IHC) for antibodies labeling rods, cones and their presynaptic terminals. None of the retinas showed any sign of stress. Selected proteins of mGluR6 cascade and its modulators were examined by IHC and showed that PKCα weakly labeled the rod bipolar somata in the affected, but intensely labeled axonal terminals that appeared thickened and irregular. Dendritic terminals of ON-bipolar cells showed increased Goα labeling. Both PKCα and Goα labeled the more prominent bipolar dendrites that extended into the OPL in affected but not normal retinas. Interestingly, RGS11 showed no labeling in the affected retina. Our results indicate involvement of a yet unknown gene in this canine model of complete CSNB.  相似文献   
63.
Katakori is a symptom name that is unique to Japan, and refers to myofascial pain syndrome-like clinical signs in the shoulder girdle. Various methods of pain relief for katakori have been reported, but in the present study, we examined the clinical effects of multi-acupuncture point injections (MAPI) in the acupuncture points with which we empirically achieved an effect, as well as the anatomical sites affected by liquid medicine. The subjects were idiopathic katakori patients (n = 9), and three cadavers for anatomical investigation. BL-10, GB-21, LI-16, SI-14, and BL-38 as the WHO notation were selected as the acupuncture point. Injections of 1 mL of 1% w/v mepivacaine were introduced at the same time into each of these points in the patients. Assessment items were the Pain Relief Score and the therapeutic effect period. Dissections were centered at the puncture sites of cadavers. India ink was similarly injected into each point, and each site that was darkly-stained with India ink was evaluated. Katakori pain in the present study was significantly reduced by MAPI. Regardless of the presence or absence of trigger points, pain was significantly reduced in these cases. Dark staining with India ink at each of the points in the anatomical analysis was as follows: BL-10: over the rectus capitis posterior minor muscle and rectus capitis posterior major muscle fascia; GB-21: over the supraspinatus muscle fascia; LI-16: over the supraspinatus muscle fascia; SI-14: over the rhomboid muscle fascia; and BL-38: over the rhomboid muscle fascia. The anatomical study suggested that the drug effect was exerted on the muscles above and below the muscle fascia, as well as the peripheral nerves because the points of action in acupuncture were darkly-stained in the spaces between the muscle and the muscle fascia.  相似文献   
64.
Major depressive disorder (MDD) is a common psychiatric disorder that involves marked disabilities in global functioning, anorexia, and severe medical comorbidities. MDD is associated with not only psychological and sociocultural problems, but also pervasive physical dysfunctions such as metabolic, neurobiological and immunological abnormalities. Nevertheless, the mechanisms underlying the interactions between these factors have yet to be determined in detail. The aim of the present study was to identify the molecular mechanisms responsible for the interactions between MDD and dysregulation of physiological homeostasis, including immunological function as well as lipid metabolism, coagulation, and hormonal activity in the brain. We generated depression-like behavior in mice using chronic mild stress (CMS) as a model of depression. We compared the gene expression profiles in the prefrontal cortex (PFC) of CMS and control mice using microarrays. We subsequently categorized genes using two web-based bioinformatics applications: Ingenuity Pathway Analysis and The Database for Annotation, Visualization, and Integrated Discovery. We then confirmed significant group-differences by analyzing mRNA and protein expression levels not only in the PFC, but also in the thalamus and hippocampus. These web tools revealed that hepatocyte nuclear factor 4 alpha (Hnf4a) may exert direct effects on various genes specifically associated with amine synthesis, such as genes involved in serotonin metabolism and related immunological functions. Moreover, these genes may influence lipid metabolism, coagulation, and hormonal activity. We also confirmed the significant effects of Hnf4a on both mRNA and protein expression levels in the brain. These results suggest that Hnf4a may have a critical influence on physiological homeostasis under depressive states, and may be associated with the mechanisms responsible for the interactions between MDD and the dysregulation of physiological homeostasis in humans.  相似文献   
65.
The broad diversity of neurons is vital to neuronal functions. During vertebrate development, the spinal cord is a site of sensory and motor tasks coordinated by interneurons and the ongoing neurogenesis. In the spinal cord, V2-interneuron (V2-IN) progenitors (p2) develop into excitatory V2a-INs and inhibitory V2b-INs. The balance of these two types of interneurons requires precise control in the number and timing of their production. Here, using zebrafish embryos with altered Notch signaling, we show that different combinations of Notch ligands and receptors regulate two functions: the maintenance of p2 progenitor cells and the V2a/V2b cell fate decision in V2-IN development. Two ligands, DeltaA and DeltaD, and three receptors, Notch1a, Notch1b, and Notch3 redundantly contribute to p2 progenitor maintenance. On the other hand, DeltaA, DeltaC, and Notch1a mainly contribute to the V2a/V2b cell fate determination. A ubiquitin ligase Mib, which activates Notch ligands, acts in both functions through its activation of DeltaA, DeltaC, and DeltaD. Moreover, p2 progenitor maintenance and V2a/V2b fate determination are not distinct temporal processes, but occur within the same time frame during development. In conclusion, V2-IN cell progenitor proliferation and V2a/V2b cell fate determination involve signaling through different sets of Notch ligand–receptor combinations that occur concurrently during development in zebrafish.  相似文献   
66.
67.
68.
In the course of our chemical screening program for new secondary metabolites, we isolated a new compound JBIR-66 (1) from the culture broth of the tunicate-derived actinomycete, Saccharopolyspora sp. SS081219JE-28. The structure of 1 was determined to be (3Z,6E,8E)-N-(4-acetamido-3-hydroxybutyl)-2-hydroxy-4,8-dimethylundeca-3,6,8-trienamide on the basis of extensive NMR and MS spectroscopic data.  相似文献   
69.
Haemophilus influenzae is a common pathogen of respiratory infections. We examined whether beta-lactamase-negative ampicillin-resistant (BLNAR) strains that are known to have ampicillin resistance due to a substitution of amino acid of penicillin binding protein (PBP)-3, differ from beta-lactamase-negative ampicillin-susceptible strains with regard to invasion of bronchial epithelium. After 3h incubation of each of 34 beta-lactamase-negative ampicillin-susceptible and 57 BLNAR strains in the presence of BEAS-2B cells, a human bronchial epithelium cell line, extracellular bacteria were killed using gentamicin and intracellular bacteria numbered. All nine strains in which the efficiency of invasion was 1% or higher were BLNAR strains. The rate of invasion was significantly greater in strains with PBP-3 amino acid substitution (Met377 to Ile, Ser385 to Thr, Leu389 to Phe, and Asn526 to Lys) (n=34) than in those with no amino acid substitution. Electron microscopy showed that high invasive BLNAR strains were observed in cytoplasm of BEAS-2B cell layer. The injured cells were 9.44+/-1.76% among attaching cells examined by trypan blue staining after 6h. These data may suggest that the amino acid substitution of the PBP in BLNAR strains may at least partly play roles in macropinocytosis, leading to the invasion and injury to epithelial cells.  相似文献   
70.
Previous studies on the activity of the rice Gα promoter using a β-Glucuronidase (GUS) reporter construct indicated that Gα expression was highest in developing organs and changed in a developmental stage-dependent manner. In this paper, GUS activity derived from the rice Gα promoter was analyzed in seeds and developing leaves. In seeds, GUS activity was detected in the aleurone layer, embryo, endosperm and scutellar epithelium. In developing leaves, the activity was detected in the mesophyll tissues, phloem and xylem of the leaf sheath and in the mesophyll tissue of the leaf blade. The activity in the aleurone layer and scutellar epithelium suggests that the Gα subunit may be involved in gibberellin signaling. The activity in the mesophyll tissues of the leaf blade suggests that the Gα subunit may be related to the intensity of disease resistance. The pattern of the activity in the developing leaf also indicates that the expression of Gα follows a developmental profile at the tissue level.Key words: expression pattern, Gα subunit, GUS staining pattern, heterotrimeric G protein, riceThe rice mutant d1 is deficient in the heterotrimeric G protein α subunit (Gα). Recently it was found that the dwarfism phenotype of d1 is due to a reduction in cell numbers.1 This discovery has led to new questions regarding how rice Gα regulates cell number, and which other signaling molecules are involved in this process in various tissues and at different development stages. Studies of d1 suggest that rice Gα participates in both gibberellin signaling24 and brassinosteroid signaling.58 Promoter studies using the β-Glucuronidase (GUS) reporter indicate that Gα expression is highest in developing organs.1 In this paper, we report on the expression pattern of a Gα promoter::GUS construct in seeds and developing leaves of rice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号