首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   393篇
  免费   43篇
  2023年   2篇
  2021年   8篇
  2020年   7篇
  2019年   9篇
  2018年   13篇
  2017年   6篇
  2016年   10篇
  2015年   17篇
  2014年   21篇
  2013年   23篇
  2012年   28篇
  2011年   21篇
  2010年   12篇
  2009年   12篇
  2008年   11篇
  2007年   17篇
  2006年   21篇
  2005年   13篇
  2004年   9篇
  2003年   7篇
  2002年   13篇
  2001年   11篇
  2000年   7篇
  1999年   9篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   7篇
  1992年   10篇
  1991年   9篇
  1990年   6篇
  1989年   2篇
  1988年   6篇
  1987年   10篇
  1986年   11篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1975年   3篇
  1972年   2篇
  1970年   2篇
  1969年   3篇
  1968年   2篇
  1967年   2篇
  1964年   1篇
排序方式: 共有436条查询结果,搜索用时 15 毫秒
61.
62.
63.
Sphingosine kinase 1 (SphK1) is a lipid kinase implicated in mitogenic signaling pathways in vascular smooth muscle cells. We demonstrate that human coronary artery smooth muscle (HCASM) cells require SphK1 for growth and that SphK1 mRNA and protein levels are elevated in PDGF stimulated HCASM cells. To determine the mechanism of PDGF-induced SphK1 expression, we used pharmacological inhibitors of the PI3K/AKT/mTOR signaling pathway. Wortmannin, SH-5, and rapamycin significantly blocked PDGF-stimulated induction of SphK1 mRNA and protein expression, indicating a regulatory role of the PI3K/AKT/mTOR pathway in SphK1 expression. To determine which isoform of AKT regulates SphK1 mRNA and protein levels, siRNAs specific for AKT1, AKT2, and AKT3 were used. We show that AKT2 siRNA significantly blocked PDGF-stimulated increases in SphK1 mRNA and protein expression levels as well as SphK1 enzymatic activity levels. In contrast, AKT1 or AKT3 siRNA did not have an effect. Together, these results demonstrate that the PI3K/AKT/mTOR signaling pathway is involved in regulation of SphK1, with AKT2 playing a key role in PDGF-induced SphK1 expression in HCASM cells.  相似文献   
64.
Nitric oxide synthase (NOS) catalyzes the formation of nitric oxide (NO) from L-arginine. In this study, the cellular localization of neuronal NOS (nNOS) activity in the human retina since fetal development was examined by immunohistochemistry. No detectable staining in the fetal retina was present at 14 weeks of gestation (wg), the earliest age group examined. A centro-peripheral gradient of development of nNOS immunoreactivity was evident at 16–17 wg, with the midperipheral retina showing nNOS immunoreactivity in most of the cell types and the inner plexiform layer while the peripheral part demonstrated moderate immunoreactivity only in the ganglion cell layer and photoreceptor precursors. A transient increase in nNOS immunoreactivity in the ganglion cells and Müller cell endfeet between 18–19 and 24–25 wg was observed at the time when programmed cell death in the ganglion cell layer, loss of optic nerve fibres as well as increase in glutamate immunoreactivity and parvalbumin (a calcium binding protein) immunoreactivity in the ganglion cells was reported. These observations indicate that programmed cell death of ganglion cells in the retina may be linked to glutamate toxicity and NO activity, as also suggested by others in the retina and cerebral cortex. The presence of nNOS immunoreactivity in the photoreceptors from 16–17 weeks of fetal life to adulthood indicates other functions, besides their involvement in photoreceptor function of transduction and information processing.  相似文献   
65.
66.
Stem cell niche research uses nanotechnologies to mimic the extra-cellular microenvironment to promote proliferation and differentiation. The aim of designing different scaffolds is to simulate the best structural and environmental pattern for extracellular matrix. This experiment was designed to study the proliferative behaviour of canine bone marrow deriver mesenchymal stem cells (MSCs) on different nanomaterial based thin film scaffolds of carbon nanotubes (CNT), chitosan and poly ε-caprolactone. Similar number of cells was seeded on the scaffolds and standard cell culture flask, taken as control. Cells were maintained on DMEM media and relative number of metabolically active cells was determined by MTT assay up to day six of culture. Cells proliferated on control and all the scaffolds as the days progressed. Although proliferation rate was slow but no decline of cell number was noticed on the scaffolds during the study period. Initially, the cell proliferation was lower on CNT but as time progressed no significant difference was observed compared to control. The result indicated that nanomaterial based scaffolds reduce the proliferation rate of canine MSCs. However, canine MSCs adapted and proliferated better on CNT substrate in vitro and may be used as a scaffold component in canine tissue engineering in future.  相似文献   
67.
The proper assembly and operation of the mitotic spindle is essential to ensure the accurate segregation of chromosomes and to position the cytokinetic furrow during cell division in eukaryotes. Not only are dynamic microtubules required but also the concerted actions of multiple motor proteins are necessary to effect spindle pole separation, chromosome alignment, chromatid segregation, and spindle elongation. Although a number of motor proteins are known to play a role in mitosis, there remains a limited understanding of their full range of functions and the details by which they interact with other spindle components. The kinesin-5 (BimC/Eg5) family of motors is largely considered essential to drive spindle pole separation during the initial and latter stages of mitosis. We have deleted the gene encoding the kinesin-5 member in Dictyostelium, (kif13), and find that, in sharp contrast with results found in vertebrate, fly, and yeast organisms, kif13(-) cells continue to grow at rates indistinguishable from wild type. Phenotype analysis reveals a slight increase in spindle elongation rates in the absence of Kif13. More importantly, there is a dramatic, premature separation of spindle halves in kif13(-) cells, suggesting a novel role of this motor in maintaining spindle integrity at the terminal stages of division.  相似文献   
68.
A case-control study was undertaken to investigate the status of platelet monoamine oxidase-B (MAO-B) activity in Indian cases of idiopathic Parkinson’s disease. A significant increase in the activity of platelet MAO-B was observed in Parkinson’s cases (n = 26) as compared to controls (n = 26). No significant change in the activity of the enzyme was observed while the data was analysed with respect to age, sex and duration of disease. A trend of decrease in platelet MAO-B activity was observed in Parkinson’s cases with respect to stage although the change was not significant. No correlation in platelet MAO-B activity was observed with respect to age and sex in the control subjects. Parkinson’s cases treated with L-DOPA and MAO-B inhibitor exhibited decreased platelet MAO-B activity as compared to drug naive cases and those treated with L-DOPA alone. Interestingly, Parkinson’s cases treated with L-DOPA and amantadine also had lower platelet MAO-B activity as compared to drug naive cases and those treated with L-DOPA alone. Activity of platelet MAO-B in Parkinson’s patients was increased in naive cases and those treated with L-DOPA alone or in combination with other drugs compared to controls. The results of the present study indicate that phenotypic activity of platelet MAO-B is high in Indian Parkinson’s cases. Further, action mechanism of drugs used in the treatment of Parkinson’s disease could be understood by assay of platelet MAO-B activity. It is an interesting observation and may be looked further in large number of cases.  相似文献   
69.
Kinesins are a diverse superfamily of motor proteins that drive organelles and other microtubule-based movements in eukaryotic cells. These motors play important roles in multiple events during both interphase and cell division. Dictyostelium discoideum contains 13 kinesin motors, 12 of which are grouped into nine families, plus one orphan. Functions for 11 of the 13 motors have been previously investigated; we address here the activities of the two remaining kinesins, both isoforms with central motor domains. Kif6 (of the kinesin-13 family) appears to be essential for cell viability. The partial knockdown of Kif6 with RNA interference generates mitotic defects (lagging chromosomes and aberrant spindle assemblies) that are consistent with kinesin-13 disruptions in other organisms. However, the orphan motor Kif9 participates in a completely novel kinesin activity, one that maintains a connection between the microtubule-organizing center (MTOC) and nucleus during interphase. kif9 null cell growth is impaired, and the MTOC appears to disconnect from its normally tight nuclear linkage. Mitotic spindles elongate in a normal fashion in kif9 cells, but we hypothesize that this kinesin is important for positioning the MTOC into the nuclear envelope during prophase. This function would be significant for the early steps of cell division and also may play a role in regulating centrosome replication.Directed cell migration, organelle transport, and cell division involve fundamental motilities that are necessary for eukaryotic cell viability and function. Much of the force required for these motilities is generated through the cyclical interactions of motor proteins with the cell cytoskeleton. Microtubules (MTs) and actin filaments provide structural support and directional guides, and all eukaryotic organisms have diverse, often extensive families of motors that carry out different tasks. Functional studies have revealed that many of the motors work in combination with others, and that the individual deletion of a single motor activity often is insufficient to produce a defect that substantially impairs cell growth or function. The latter phenomenon is particularly evident in some organisms with simple motor families (14, 42). By contrasting homologous motor functions between simple and complex systems, we hope to learn the details of how each motor is custom-tuned for specific tasks.Dictyostelium discoideum is a compact amoeba that exhibits robust forms of motility common to nearly all animal cells, with speeds that frequently exceed corresponding rates in vertebrate cell models (25, 33, 54). Since Dictyostelium possesses a relatively small number of motor proteins (13 kinesin, 1 dynein, and 13 myosin isoforms [23, 24, 26]), it combines advantages of terrific cytology with straightforward molecular genetics and thus represents an excellent model to investigate individual and combined motor protein actions. To date, 11 of the 13 kinesin motors have been analyzed functionally (5, 17, 18, 30, 42, 46, 51, 60). Only 1 of these 11 motors, Kif3, a member of the kinesin-1 family of organelle transporters, appears to be essential for organism viability (51). Individual disruptions of three kinesin genes (kif1, kif4, and kif12) produce distinctive defects in cell growth or organelle transport (30, 42, 46). Analyses of six of the seven other kinesins reveal important phenotypes but only when combined with other motor disruptions or cell stresses. We address here the roles of the remaining two Dictyostelium MT-based motors.kif6 and kif9 encode two central motor kinesins in the Dictyostelium genome (24). The best-studied isoforms of this motor type are represented by the kinesin-13 family, and they largely function to regulate MT length during cell division (13, 16, 40, 41). In some organisms, kinesin-13 motors also have been shown to operate during interphase and to mediate MT and flagellar length control (3, 4, 15) and perhaps even organelle transport (32, 43, 56). kif6 encodes the kinesin-13 family member in Dictyostelium. We demonstrate that Kif6 activity is essential for viability, and that it plays a primary, conserved role in chromosome segregation during cell division.The second of the central motor kinesins, Kif9, does not group with an existing family (24, 38). The gene disruption of this motor reveals a completely novel function for a kinesin in maintaining a connection between the MT-organizing center (MTOC) and the nucleus. By electron microscopy (EM), the MTOC of Dictyostelium appears as a cytoplasmic cube-shaped structure surrounded by amorphous dense material (39, 44). EM, biochemical analyses, antibody labeling, and live-cell imaging studies have demonstrated that during interphase, the cytoplasmic MTOC is firmly and closely attached to the nucleus (28, 29, 44, 48, 49, 63). Upon entry into mitosis, the MTOC duplicates during prophase and is brought to or into a fenestration of the nuclear envelope, and then it establishes an intranuclear bipolar spindle for division (39, 53, 64). While MTOCs can be purified from Dictyostelium, the methods rely heavily on reagents that actively disrupt the attached nuclei (10, 59). A recent study has identified at least one component of this connection, the nuclear envelope protein Sun-1 (67). The perturbation of Sun-1 affects nuclear shape and results in centrosome detachment, hyperamplification, and aneuploidy. We demonstrate in the current work that the disruption of the Kif9 kinesin also perturbs the MTOC-nucleus linkage. Our results suggest that an MT-mediated mechanism plays a significant role in maintaining an MTOC-nucleus connection during interphase, and we discuss how this connection could be important to regulate centrosome replication and ensure proper chromosome segregation during cell division.  相似文献   
70.
Reassessment of cardiovascular risk in diabetes   总被引:3,自引:0,他引:3  
PURPOSE OF REVIEW: To review recent trials and reassess cardiovascular risk in people with diabetes. RECENT FINDINGS: Recent clinical trials have tended to focus on lower-risk participants with diabetes who have had event rates considerably lower than participants in the early lipid trials. Statin studies have generally shown benefit in those without cardiovascular disease and at lower levels of low-density lipoprotein cholesterol. Results of fibrate and glitazone studies have been mixed; the question of benefit among statin-treated patients remains unanswered. Investigators failed to confirm the benefits of glucose control observed in the original Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction study possibly due to study design issues. Epidemiologic follow-up of the Diabetes Control and Complications Trial showed sustained benefit of glucose control. A number of studies have shown the benefit of inpatient control of blood glucose. We await the results of ongoing blood pressure trials and other ongoing trials, which should provide much new information. A conceptual model of cardiovascular risk for people with diabetes mellitus based on the UK Prospective Diabetes Study outcomes model is discussed. SUMMARY: The majority of adults with diabetes have a substantially greater risk compared with those without diabetes and a small percentage has very high risk. A minority of individuals may have considerably lower 10-year risk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号