首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   6篇
  国内免费   4篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2009年   6篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2004年   7篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1990年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1972年   1篇
  1971年   1篇
  1955年   1篇
  1954年   4篇
  1950年   1篇
  1934年   1篇
  1916年   1篇
  1906年   1篇
  1905年   1篇
排序方式: 共有95条查询结果,搜索用时 93 毫秒
31.
The acute toxicity of the aqueous and ethanol extracts of Parkia biglobosa pods against Clarias gariepinus was investigated under laboratory conditions. Agitated behaviours and respiratory distress were also observed during the exposure period. The adverse effects on biochemical parameters were assessed using semi-static bioassays for 28 days. The ethanol extract of P. biglobosa pods was found to be more acutely toxic with a 96 h LC50 value of 13.96 mg l?1 than the aqueous extracts, with a 96 h LC50 value of 19.95 mg l?1 against C. gariepinus. Both extracts induced agitated behaviours and respiratory distress in exposed organisms. The activities of superoxide dismutase (SOD), catalase (CAT) and the concentration of malondialdehyde (MDA) were significantly lower (p < 0.05) in groups of organisms exposed to extracts of P. biglobosa when compared with the control group after 14 days. The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) were also significantly (p < 0.05) lower compared with activities of the enzymes in the control group after 28 days. The current study has shown that the introduction of P. biglobosa pods into aquatic ecosystems is acutely toxic to fish and would possibly be to other non-target aquatic organisms especially invertebrates.  相似文献   
32.
33.
Unexplained fever (UF) is a common problem in children under 3 years old. Although virus infection is suspected to be the cause of most of these fevers, a comprehensive analysis of viruses in samples from children with fever and healthy controls is important for establishing a relationship between viruses and UF. We used unbiased, deep sequencing to analyze 176 nasopharyngeal swabs (NP) and plasma samples from children with UF and afebrile controls, generating an average of 4.6 million sequences per sample. An analysis pipeline was developed to detect viral sequences, which resulted in the identification of sequences from 25 viral genera. These genera included expected pathogens, such as adenoviruses, enteroviruses, and roseoloviruses, plus viruses with unknown pathogenicity. Viruses that were unexpected in NP and plasma samples, such as the astrovirus MLB-2, were also detected. Sequencing allowed identification of virus subtype for some viruses, including roseoloviruses. Highly sensitive PCR assays detected low levels of viruses that were not detected in approximately 5 million sequences, but greater sequencing depth improved sensitivity. On average NP and plasma samples from febrile children contained 1.5- to 5-fold more viral sequences, respectively, than samples from afebrile children. Samples from febrile children contained a broader range of viral genera and contained multiple viral genera more frequently than samples from children without fever. Differences between febrile and afebrile groups were most striking in the plasma samples, where detection of viral sequence may be associated with a disseminated infection. These data indicate that virus infection is associated with UF. Further studies are important in order to establish the range of viral pathogens associated with fever and to understand of the role of viral infection in fever. Ultimately these studies may improve the medical treatment of children with UF by helping avoid antibiotic therapy for children with viral infections.  相似文献   
34.
35.
36.
Arboviral infections are an important cause of emerging infections due to the movements of humans, animals, and hematophagous arthropods. Quaranfil virus (QRFV) is an unclassified arbovirus originally isolated from children with mild febrile illness in Quaranfil, Egypt, in 1953. It has subsequently been isolated in multiple geographic areas from ticks and birds. We used high-throughput sequencing to classify QRFV as a novel orthomyxovirus. The genome of this virus is comprised of multiple RNA segments; five were completely sequenced. Proteins with limited amino acid similarity to conserved domains in polymerase (PA, PB1, and PB2) and hemagglutinin (HA) genes from known orthomyxoviruses were predicted to be present in four of the segments. The fifth sequenced segment shared no detectable similarity to any protein and is of uncertain function. The end-terminal sequences of QRFV are conserved between segments and are different from those of the known orthomyxovirus genera. QRFV is known to cross-react serologically with two other unclassified viruses, Johnston Atoll virus (JAV) and Lake Chad virus (LKCV). The complete open reading frames of PB1 and HA were sequenced for JAV, while a fragment of PB1 of LKCV was identified by mass sequencing. QRFV and JAV PB1 and HA shared 80% and 70% amino acid identity to each other, respectively; the LKCV PB1 fragment shared 83% amino acid identity with the corresponding region of QRFV PB1. Based on phylogenetic analyses, virion ultrastructural features, and the unique end-terminal sequences identified, we propose that QRFV, JAV, and LKCV comprise a novel genus of the family Orthomyxoviridae.Arboviral infections are an important and emerging cause of human illness. Recent epidemics of West Nile, chikungunya, dengue, and yellow fever illustrate the importance of understanding the basic virology of arboviruses. Quaranfil virus (QRFV) is a heretofore-unclassified arbovirus isolated in 1953 from ticks (Argas [Persicargus] arboreus) collected near Cairo, Egypt, and subsequently passaged in mice and Vero cells. This tick-derived isolate was determined by serologic methods to be related to a virus previously cultured from the blood of two children with mild febrile illnesses in Quaranfil, Egypt (32). Human serologic studies performed in the 1960s in Egypt revealed that approximately 8% of the local population had neutralizing antibodies to this virus, demonstrating that human infection occurs and raising the question of whether QRFV might represent an unrecognized cause of viral illness in humans (32). The extent to which this virus may cause clinical illness in people is currently unknown; however, multiple strains of QRFV have been isolated from ticks and seabirds in Egypt, South Africa, Afghanistan, Nigeria, Kuwait, Iraq, Yemen, and Iran (1, 12, 20, 29, 30). QRFV is lethal after intracerebral (i.c.) inoculation of newborn mice (32). One study reported that experimental QRFV infection of laboratory mice causes a lethal respiratory disease and meningoencephalitis (4).Johnston Atoll virus (JAV) was originally isolated from ticks (Ornithodoros capensis) collected in 1964 from a Noddy Tern (Anous stolidus) nest, Sand Island, Johnston Atoll in the central Pacific (11). Multiple strains have subsequently been isolated from eastern Australia, New Zealand, and Hawaii (3). No human disease has been associated with JAV, but it is lethal to newborn and weanling mice after i.c. injection and to 1- to 2-day-old chicks after subcutaneous inoculation. (11). Lake Chad virus (LKCV), strain Ib An 38918, was isolated from a masked weaver bird, Ploceus vitellinus, collected at Lake Chad, Nigeria, in 1969. LKCV is lethal to newborn mice after i.c. inoculation, and it was shown to be antigenically related to QRFV (R. E. Shope, personnel communication).To date, conventional approaches to characterize QRFV, JAV, and LKCV have not resulted in a definitive classification of these viruses. QRFV and JAV are enveloped RNA viruses, and electron microscopic and serologic studies tentatively suggested a classification in the arenavirus family based on morphological and morphogenetic features of the viruses (38). In this study, we utilized high-throughput sequencing to identify genomic sequences from QRFV, JAV, and LKCV. Based on analysis of the complete sequences of five of these segments from QRFV and partial sequences from JAV and LKCV, ultrastructural analysis of infected cell cultures, and serologic testing, we propose that these viruses define a novel genus in the family Orthomyxoviridae.  相似文献   
37.
Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms.  相似文献   
38.
ABSTRACT

Indirect immunofluorescence performed using sections of actively growing maize root apices fixed and then embedded in low-melting-point Steedman's wax has proved efficient in revealing the arrangements and reorganizations of motility-related cytoskeletal elements which are associated with root cell development and tissue differentiation. This powerful, yet relatively simple, technique shows that specific rearrangements of both microtubular (MT) and actin microfilament (MF) arrays occur in cells as they leave the meristem and traverse the transitional region interpolated between meristem and elongation region. Cytoskeletal and growth analyses have identified the transition zone as critical for both cell and root development; it is in this zone that cell growth is channelled, by the cytoskeleton, into a strictly polarized mode which enables root tips to extend rapidly through the soil in search of water and nutrients. An integrated cytoskeletal network is crucial for both the cytomorphogenesis of individual cells and the overall morphogenesis of the plant body. The latter process can be viewed as a reflection of the tight control which cytoskeletal networks exert not only over cell division planes in the cells within meristematic apices but also over the orientation of cell growth in the meristem and elsewhere. Endoplasmic MTs interconnecting the plasma membrane with the nucleus are suggested to be involved in cell division control; they may also act as a two-way cytoskeletal communication channel for signals passing to and fro between the extracellular environment and the genome. Moreover, the dynamism of endoplasmic MTs exerts direct effects on chromatin structure and the accompanying nuclear architecture and hence can help exert a cellular level of control over cell growth and cell cycle progression. Because the inherent dynamic instability of MTs depends on the concentration of tubulin dimers within the cytoplasm, we propose that when asymmetric cell division occurs, it will result in two daughter cells which differ in the turnover rates of their MTs. This phenomenon could be responsible for different cell fates of daughter plant cells produced by such cell divisions.  相似文献   
39.
40.

Background

In 2009, an outbreak of dengue caused high fatality in Sri Lanka. We conducted 5 autopsies of clinically suspected myocarditis cases at the General Hospital, Peradeniya to describe the histopathology of the heart and other organs.

Methods

The diagnosis of dengue was confirmed with specific IgM and IgG ELISA, HAI and RT-PCR techniques. The histology was done in tissue sections stained with hematoxylin and eosin.

Results

Of the 319 cases of dengue fever, 166(52%) had severe infection. Of them, 149 patients (90%) had secondary dengue infection and in 5 patients, DEN-1 was identified as the causative serotype. The clinical diagnosis of myocarditis was considered in 45(27%) patients. The autopsies were done in 5 patients who succumbed to shock (3 females and 2 males) aged 13- 31 years. All had pleural effusions, ascites, bleeding patches in tissue planes and histological evidence of myocarditis. The main histological findings of the heart were interstitial oedema with inflammatory cell infiltration and necrosis of myocardial fibers. One patient had pericarditis. The concurrent pulmonary abnormalities were septal congestion, pulmonary haemorrhage and diffuse alveolar damage; one case showed massive necrosis of liver.

Conclusions

The histology supports occurrence of myocarditis in dengue infection.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号