首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   20篇
  2023年   1篇
  2021年   8篇
  2020年   4篇
  2019年   5篇
  2018年   16篇
  2017年   3篇
  2016年   13篇
  2015年   19篇
  2014年   23篇
  2013年   20篇
  2012年   24篇
  2011年   28篇
  2010年   13篇
  2009年   8篇
  2008年   12篇
  2007年   15篇
  2006年   9篇
  2005年   15篇
  2004年   11篇
  2003年   7篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1986年   1篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1973年   1篇
  1970年   1篇
  1967年   5篇
  1966年   4篇
  1965年   1篇
  1964年   1篇
  1937年   1篇
排序方式: 共有300条查询结果,搜索用时 31 毫秒
61.
Foraging behaviour of Armillaria rhizomorph systems   总被引:1,自引:0,他引:1  
  相似文献   
62.
63.
Exposure to recurrent desiccation cycles carries a risk of accumulation of reactive oxygen species that can impair leaf physiological activity upon rehydration, but changes in filmy fern stress status through desiccation and rewatering cycles have been poorly studied. We studied foliage photosynthetic rate and volatile marker compounds characterizing cell wall modifications (methanol) and stress development (lipoxygenase [LOX] pathway volatiles and methanol) through desiccation–rewatering cycles in lower‐canopy species Hymenoglossum cruentum and Hymenophyllum caudiculatum, lower‐ to upper‐canopy species Hymenophyllum plicatum and upper‐canopy species Hymenophyllum dentatum sampled from a common environment and hypothesized that lower canopy species respond more strongly to desiccation and rewatering. In all species, rates of photosynthesis and LOX volatile emission decreased with progression of desiccation, but LOX emission decreased with a slower rate than photosynthesis. Rewatering first led to an emission burst of LOX volatiles followed by methanol, indicating that the oxidative burst was elicited in the symplast and further propagated to cell walls. Changes in LOX emissions were more pronounced in the upper‐canopy species that had a greater photosynthetic activity and likely a greater rate of production of photooxidants. We conclude that rewatering induces the most severe stress in filmy ferns, especially in the upper canopy species.  相似文献   
64.
Solar energy, fodder energy, microclimate optimization energy as well as technological process energy were defined as energy flows entering an egg production ecotechnical system. Nutrition biomass, chemical bond energy (eggs) and dung energy were estimated. Two criteria for energy consumption assessment were introduced: energy (kJ) consumed per unit of product and energy (kJ) consumed per unit of energy. Five fowl breeds were investigated. Restructuring in poultry farming was viewed with respect to the introduction of high performance breeds with low values of energy consumption. Elimination of systematic stress (abrupt transition of light intensity) reduced energy consumption in egg production. Methane fermentation parameters were optimized experimentally under laboratory conditions using a mathematical model. Dung biogas introduced an average of 25.75–29.52 MJ per bird into the observed system.  相似文献   
65.
For almost two decades, cell-based therapies have been tested in modern regenerative medicine to either replace or regenerate human cells, tissues, or organs and restore normal function. Secreted paracrine factors are increasingly accepted to exert beneficial biological effects that promote tissue regeneration. These factors are called the cell secretome and include a variety of proteins, lipids, microRNAs, and extracellular vesicles, such as exosomes and microparticles. The stem cell secretome has most commonly been investigated in pre-clinical settings. However, a growing body of evidence indicates that other cell types, such as peripheral blood mononuclear cells (PBMCs), are capable of releasing significant amounts of biologically active paracrine factors that exert beneficial regenerative effects. The apoptotic PBMC secretome has been successfully used pre-clinically for the treatment of acute myocardial infarction, chronic heart failure, spinal cord injury, stroke, and wound healing. In this review we describe the benefits of choosing PBMCs instead of stem cells in regenerative medicine and characterize the factors released from apoptotic PBMCs. We also discuss pre-clinical studies with apoptotic cell-based therapies and regulatory issues that have to be considered when conducting clinical trials using cell secretome-based products. This should allow the reader to envision PBMC secretome-based therapies as alternatives to all other forms of cell-based therapies.  相似文献   
66.
67.
We have applied the CRISPR/Cas9 system in vivo to disrupt gene expression in neural stem cells in the developing mammalian brain. Two days after in utero electroporation of a single plasmid encoding Cas9 and an appropriate guide RNA (gRNA) into the embryonic neocortex of Tis21::GFP knock‐in mice, expression of GFP, which occurs specifically in neural stem cells committed to neurogenesis, was found to be nearly completely (≈90%) abolished in the progeny of the targeted cells. Importantly, upon in utero electroporation directly of recombinant Cas9/gRNA complex, near‐maximal efficiency of disruption of GFP expression was achieved already after 24 h. Furthermore, by using microinjection of the Cas9 protein/gRNA complex into neural stem cells in organotypic slice culture, we obtained disruption of GFP expression within a single cell cycle. Finally, we used either Cas9 plasmid in utero electroporation or Cas9 protein complex microinjection to disrupt the expression of Eomes/Tbr2, a gene fundamental for neocortical neurogenesis. This resulted in a reduction in basal progenitors and an increase in neuronal differentiation. Thus, the present in vivo application of the CRISPR/Cas9 system in neural stem cells provides a rapid, efficient and enduring disruption of expression of specific genes to dissect their role in mammalian brain development.  相似文献   
68.
Brassicales release volatile glucosinolate breakdown products upon tissue mechanical damage, but it is unclear how the release of glucosinolate volatiles responds to abiotic stresses such as heat stress. We used three different heat treatments, simulating different dynamic temperature conditions in the field to gain insight into stress‐dependent changes in volatile blends and photosynthetic characteristics in the annual herb Brassica nigra (L.) Koch. Heat stress was applied by either heating leaves through temperature response curve measurements from 20 to 40 °C (mild stress), exposing plants for 4 h to temperatures 25–44 °C (long‐term stress) or shock‐heating leaves to 45–50 °C. Photosynthetic reduction through temperature response curves was associated with decreased stomatal conductance, while the reduction due to long‐term stress and collapse of photosynthetic activity after heat shock stress were associated with non‐stomatal processes. Mild stress decreased constitutive monoterpene emissions, while long‐term stress and shock stress resulted in emissions of the lipoxygenase pathway and glucosinolate volatiles. Glucosinolate volatile release was more strongly elicited by long‐term stress and lipoxygenase product released by heat shock. These results demonstrate that glucosinolate volatiles constitute a major part of emission blend in heat‐stressed B. nigra plants, especially upon chronic stress that leads to induction responses.  相似文献   
69.
We used a simulation model of forest dynamics to examine the ecological significance of the complex interactions among site conditions, tree growth, and the development of a thick forest floor moss layer found in many boreal forests. To examine the effect of site conditions on moss growth and forest dynamics, we simulated the dynamics of several different forest sites in the uplands of interior Alaska. Then we used a cold, wet permafrost site to examine the ecological consequences of direct moss and tree interactions. Our analyses revealed a tightly coupled system in which forest succession was highly sensitive to the interactions among site conditions, mosses, and trees. The effect of mosses on the soil thermal regime was a particularly important feedback. Direct interactions between mosses and trees that affected the development of a thick forest floor layer were also important. In particular, shading of moss by trees, reduced tree regeneration on moss-covered soils, and reduced moss growth with open forest canopies were also important determinants of forest succession. These complex feedbacks ensure that an ecosystem approach is needed to understand the ecology of boreal forests.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号