首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23758篇
  免费   1723篇
  国内免费   8篇
  25489篇
  2023年   202篇
  2022年   376篇
  2021年   721篇
  2020年   544篇
  2019年   667篇
  2018年   811篇
  2017年   740篇
  2016年   1008篇
  2015年   1354篇
  2014年   1430篇
  2013年   1714篇
  2012年   1961篇
  2011年   1722篇
  2010年   1118篇
  2009年   1001篇
  2008年   1196篇
  2007年   1220篇
  2006年   1062篇
  2005年   945篇
  2004年   888篇
  2003年   783篇
  2002年   714篇
  2001年   369篇
  2000年   318篇
  1999年   280篇
  1998年   159篇
  1997年   144篇
  1996年   120篇
  1995年   121篇
  1994年   112篇
  1993年   99篇
  1992年   149篇
  1991年   128篇
  1990年   80篇
  1989年   103篇
  1988年   104篇
  1987年   100篇
  1986年   95篇
  1985年   74篇
  1984年   79篇
  1983年   57篇
  1982年   48篇
  1981年   52篇
  1980年   36篇
  1979年   54篇
  1978年   41篇
  1976年   32篇
  1975年   41篇
  1974年   32篇
  1973年   51篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Intracellular protein inclusions in Alzheimer's disease and progressive supranuclear palsy contain UBB+1, a variant ubiquitin. UBB+1 is able block the 26S proteasome in cell lines. Proteasome inhibition by drug action has previously been shown to induce a heat-shock response and render protection against stress. We investigated UBB+1 by developing a stable, conditional expression model in SH-SY5Y human neuroblastoma cells. Induction of UBB+1 expression caused proteasome inhibition as was confirmed by reduced ability to process misfolded canavanyl proteins, accumulation of GFPu, a proteasome substrate, and reduced cleavage of a fluorogenic substrate. We show that expression of UBB+1 induces expression of heat-shock proteins. This priming of the chaperone system in these cells promotes a subsequent resistance to tert-butyl hydroperoxide-mediated oxidative stress. We conclude that although UBB+1-expressing cells have a compromised ubiquitin-proteasome system, they are protected against oxidative stress conditions.  相似文献   
992.
Glutamatergic terminals from rat midbrain were characterized by immunolocalization of synaptophysin and the vesicular glutamate transporters, either VGLUT1 or VGLUT2. Terminals containing these markers represent about 31% (VGLUT1) and 16% (VGLUT2) of the total synaptosomal population. VGLUT1-positive glutamatergic terminals responded to ATP or P1,P 5-di(adenosine-5') pentaphosphate (Ap5A) with an increase in the intrasynaptosomal calcium concentration as measured by a microfluorimetric technique in single synaptosomes. Roughly 20% of the VGLUT1-positive terminals responded to ATP, 13% to Ap5A and 11% to both agonists. Finally 56% of the terminals labeled with the anti-VGLUT1 antibody did not show any calcium increase in response to ATP or Ap5A. A similar response distribution was also observed in the VGLUT2-positive terminals. The Ca2+ responses induced by ATP and Ap5A in the glutamatergic terminals could be selectively inhibited by pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, 80 micro m) and P1,P 5-di(inosine-5') pentaphosphate (Ip5I, 100 nm), respectively. Both ATP and Ap5A, once assayed in the presence of extrasynaptosomal calcium, were able to induce a concentration-dependent glutamate release from synaptosomal populations, EC50 values being 21 micro m and 38 micro m for ATP and Ap5A, respectively. Specific inhibition of glutamate release was obtained with PPADS on the ATP effect and with Ip5I on the dinucleotide response, indicating that separate receptors mediate the secretory effects of both compounds.  相似文献   
993.
In the present work we investigated the effect of selective stimulation of non-desensitizing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in the intracellular processes leading to hippocampal neuronal death and production of reactive oxygen species (ROS). Activation of AMPA receptors in the presence of cyclothiazide (CYZ), a blocker of AMPA receptor desensitization, resulted in the death of approximately 25% of neurones, which was prevented by 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(f)quinoxaline (NBQX), an AMPA-preferring receptor antagonist. (+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) protected the neurones from necrotic death induced by AMPA or NMDA receptor activation. Neurodegeneration caused by selective activation of non-desensitizing AMPA receptors, in the presence of AMPA, CYZ and MK-801, significantly decreased the number of Co2+-positive neurones, used as a cytochemical marker of Ca2+-permeable AMPA receptors, but maintained intracellular ATP/ADP. The AMPA-mediated apoptotic cell death involved mitochondrial cytochrome c release and the activation of caspases-1 and -3, which was prevented by NBQX. Interestingly, although selective activation of AMPA receptors was not associated with production of intracellular peroxides, a moderate increase in superoxide production was observed upon exposure to antimycin A (AA). Furthermore, increased activity of Mn- superoxide dismutase (SOD) was observed on selective activation of non-desensitizing AMPA receptors. Taken together, these data make important contributions to the elucidation of the downstream pathways activated in AMPA receptor-mediated excitotoxicity in cultured rat hippocampal neurones.  相似文献   
994.
We have recently reported that the administration of AM404, an inhibitor of the endocannabinoid re-uptake process, which also has affinity for the vanilloid VR1 receptors, is able to reduce hyperkinesia, and causes recovery from neurochemical deficits, in a rat model of Huntington's disease (HD) generated by bilateral intrastriatal injections of 3-nitropropionic acid (3NP). In the present study, we wanted to explore the mechanism(s) by which AM404 produces its antihyperkinetic effect in 3NP-lesioned rats by employing several experimental approaches. First, we tried to block the effects of AM404 with selective antagonists for the CB1 or VR1 receptors, i.e. SR141716A and capsazepine, respectively. We found that the reduction caused by AM404 of the increased ambulation exhibited by 3NP-lesioned rats in the open-field test was reversed when the animals had been pre-treated with capsazepine but not with SR141716A, thus suggesting a major role of VR1 receptors in the antihyperkinetic effects of AM404. However, despite the lack of behavioral effects of the CB1 receptor antagonist, the pretreatment with this compound abolished the recovery of neurochemical [gamma-aminobutyric acid (GABA) and dopamine] deficits in the caudate- putamen caused by AM404, as also did capsazepine. In a second group of studies, we wanted to explore the potential antihyperkinetic effects of various compounds which, compared to AM404, exhibit more selectivity for either the endovanilloid or the endocannabinoid systems. First, we tested VDM11 or AM374, two selective inhibitors or the endocannabinoid re-uptake or hydrolysis, respectively. Both compounds were mostly unable to reduce hyperkinesia in 3NP-lesioned rats, although VDM11 produced a certain motor depression, and AM374 exhibited a trend to stimulate ambulation, in control rats. We also tested the effects of selective direct agonists for VR1 (capsaicin) or CB1 (CP55,940) receptors. Capsaicin exhibited a strong antihyperkinetic activity and, moreover, was able to attenuate the reductions in dopamine and GABA transmission provoked by the 3NP lesion, whereas CP55,940 had also antihyperkinetic activity but was unable to cause recovery of either dopamine or GABA deficits in the basal ganglia. In summary, our data indicate a major role for VR1 receptors, as compared to CB1 receptors, in the antihyperkinetic effects and the recovery of neurochemical deficits caused in 3NP-lesioned rats by compounds that activate both CB1 and VR1 receptors, either directly or via manipulation of the levels of endogenous agonists.  相似文献   
995.
996.
997.
Changes in 5'-AMP-activated protein kinase (AMPK) activity have recently been implicated in the control of insulin secretion by glucose (da Silva Xavier, G., Leclerc, I., Varadi, A., Tsuboi, T., Moule, S. K., and Rutter, G. A. (2003) Biochem. J. 371, 761-774). Here, we examine the possibility that activation of AMPK may regulate distal steps in insulin secretion, including vesicle movement and fusion with the plasma membrane. Vesicle dynamics were imaged in single pancreatic MIN6 beta-cells expressing lumen-targeted pH-insensitive yellow fluorescent protein, neuropeptide Y.Venus, or monomeric red fluorescent protein by total internal reflection fluorescence and Nipkow disc confocal microscopy. Overexpression of a truncated, constitutively active form of AMPK (AMPKalpha1, 1-312, T172D; AMPK CA), inhibited glucose-stimulated (30 versus 3.0 mM) vesicle movements, and decreased the number of vesicles docked or fusing at the plasma membrane, while having no effect on the kinetics of individual secretory events. Expression of the activated form of AMPK also prevented dispersal of the cortical actin network at high glucose concentrations. Monitored in permeabilized cells, where the effects of AMPK CA on glucose metabolism and ATP synthesis were bypassed, AMPK CA inhibited Ca2+ and ATP-induced insulin secretion, and decreased ATP-dependent vesicle movements. These findings suggest that components of the vesicle transport network, including vesicle-associated motor proteins, may be targets of AMPK in beta-cells, dephosphorylation of which is required for vesicle mobilization at elevated glucose concentrations.  相似文献   
998.
Proline racemase catalyzes the interconversion of L- and D-proline enantiomers and has to date been described in only two species. Originally found in the bacterium Clostridium sticklandii, it contains cysteine residues in the active site and does not require co-factors or other known coenzymes. We recently described the first eukaryotic amino acid (proline) racemase, after isolation and cloning of a gene from the pathogenic human parasite Trypanosoma cruzi. Although this enzyme is intracellularly located in replicative non-infective forms of T. cruzi, membrane-bound and secreted forms of the enzyme are present upon differentiation of the parasite into non-dividing infective forms. The secreted form of proline racemase is a potent host B-cell mitogen supporting parasite evasion of specific immune responses. Here we describe that the TcPRAC genes in T. cruzi encode functional intracellular or secreted versions of the enzyme exhibiting distinct kinetic properties that may be relevant for their relative catalytic efficiency. Although the Km of the enzyme isoforms were of a similar order of magnitude (29-75 mM), Vmax varied between 2 x 10(-4 )and 5.3 x 10(-5) mol of L-proline/s/0.125 microM of homodimeric recombinant protein. Studies with the enzyme-specific inhibitor and abrogation of enzymatic activity by site-directed mutagenesis of the active site Cys330 residue reinforced the potential of proline racemase as a critical target for drug development against Chagas' disease. Finally, we propose a protein signature for proline racemases and suggest that the enzyme is present in several other pathogenic and non-pathogenic bacterial genomes of medical and agricultural interest, yet absent in mammalian host, suggesting that inhibition of proline racemases may have therapeutic potential.  相似文献   
999.
Reactive oxygen species (ROS) and/or Ca2+ overload can trigger depolarization of mitochondrial inner membrane potential (DeltaPsim) and cell injury. Little is known about how loss of DeltaPsim in a small number of mitochondria might influence the overall function of the cell. Here we employ the narrow focal excitation volume of the two-photon microscope to examine the effect of local mitochondrial depolarization in guinea pig ventricular myocytes. Remarkably, a single local laser flash triggered synchronized and self-sustained oscillations in DeltaPsim, NADH, and ROS after a delay of approximately 40s, in more than 70% of the mitochondrial population. Oscillations were initiated only after a specific threshold level of mitochondrially produced ROS was exceeded, and did not involve the classical permeability transition pore or intracellular Ca2+ overload. The synchronized transitions were abolished by several respiratory inhibitors or a superoxide dismutase mimetic. Anion channel inhibitors potentiated matrix ROS accumulation in the flashed region, but blocked propagation to the rest of the myocyte, suggesting that an inner membrane, superoxide-permeable, anion channel opens in response to free radicals. The transitions in mitochondrial energetics were tightly coupled to activation of sarcolemmal KATP currents, causing oscillations in action potential duration, and thus might contribute to catastrophic arrhythmias during ischemia-reperfusion injury.  相似文献   
1000.
Neuritogenesis, the first step of neuronal differentiation, takes place as nascent neurites bud from the immediate postmitotic neuronal soma. Little is known about the mechanisms underlying the dramatic morphological changes that characterize this event. Here, we show that RhoA activity plays a decisive role during neuritogenesis of cultured hippocampal neurons by recruiting and activating its specific kinase ROCK, which, in turn, complexes with profilin IIa. We establish that this previously uncharacterized brain-specific actin-binding protein controls neurite sprouting by modifying actin stability, a function regulated by ROCK-mediated phosphorylation. Furthermore, we determine that this novel cascade is switched on or off by physiological stimuli. We propose that RhoA/ROCK/PIIa-mediated regulation of actin stability, shown to be essential for neuritogenesis, may constitute a central mechanism throughout neuronal differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号