首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   21篇
  2023年   1篇
  2022年   1篇
  2021年   8篇
  2020年   4篇
  2019年   6篇
  2018年   3篇
  2017年   6篇
  2016年   10篇
  2015年   11篇
  2014年   15篇
  2013年   20篇
  2012年   27篇
  2011年   24篇
  2010年   16篇
  2009年   10篇
  2008年   8篇
  2007年   8篇
  2006年   5篇
  2005年   7篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  1993年   1篇
  1968年   1篇
排序方式: 共有200条查询结果,搜索用时 109 毫秒
31.
Podosphaera leucotricha is the causal agent of powdery mildew (PM) in apple. To reduce the amount of fungicides required to control this pathogen, the development of resistant apple cultivars should become a priority. Resistance to PM was achieved in various crops by knocking out specific members of the MLO gene family that are responsible for PM susceptibility (S-genes). In apple, the knockdown of MdMLO19 resulted in PM resistance. However, since gene silencing technologies such as RNAi are perceived unfavorably in Europe, a different approach that exploits this type of resistance is needed. This work evaluates the presence of non-functional naturally occurring alleles of MdMLO19 in apple germplasm. The screening of the re-sequencing data of 63 apple individuals led to the identification of 627 single nucleotide polymorphisms (SNPs) in five MLO genes (MdMLO5, MdMLO7, MdMLO11, MdMLO18, and MdMLO19), 127 of which were located in exons. The T-1201 insertion of a single nucleotide in MdMLO19 caused the formation of an early stop codon, resulting in a truncated protein lacking 185 amino acids, including the calmodulin-binding domain. The presence of the insertion was evaluated in 115 individuals. It was heterozygous in 64 and homozygous in 25. Twelve of the 25 individuals carrying the insertion in homozygosity were susceptible to PM. After barley, pea, cucumber, and tomato, apple would be the fifth species for which a natural non-functional mlo allele has been found.  相似文献   
32.

To investigate the relationship between desiccation and the extent of protein oxidation in desert strains of Chroococcidiopsis a selection of 10 isolates from hot and cold deserts and the terrestrial cyanobacterium Chroococcidiopsis thermalis sp. PCC 7203 were exposed to desiccation (air-drying) and analyzed for survival. Strain CCMEE 029 from the Negev desert and the aquatic cyanobacterium Synechocystis sp. PCC 6803 were further investigated for protein oxidation after desiccation (drying over silica gel), treatment with H2O2 up to 1 M and exposure to γ-rays up to 25 kGy. Then a selection of desert strains of Chroococcidiopsis with different survival rates after prolonged desiccation, as well as Synechocystis sp. PCC 6803 and Chroococcidiopsis thermalis sp. PCC 7203, were analyzed for protein oxidation after treatment with 10 and 100 mM of H2O2. Results suggest that in the investigated strains a tight correlation occurs between desiccation and radiation tolerance and avoidance of protein oxidation.

  相似文献   
33.
Glutamyl-queuosine-tRNAAsp synthetase (Glu-Q-RS) is a paralog of glutamyl-tRNA synthetase (GluRS) and is found in more than forty species of proteobacteria, cyanobacteria, and actinobacteria. Glu-Q-RS shows striking structural similarity with N-terminal catalytic domain of GluRS (NGluRS) but it lacks the C-terminal anticodon binding domain (CGluRS). In spite of structural similarities, Glu-Q-RS and NGluRS differ in their functional properties. Glu-Q-RS glutamylates the Q34 nucleotide of the anticodon of tRNAAsp whereas NGluRS constitutes the catalytic domain of GluRS catalyzing the transfer of Glu on the acceptor end of tRNAGlu. Since NGluRS is able to catalyze aminoacylation of only tRNAGlu the glutamylation capacity of tRNAAsp by Glu-Q-RS is surprising. To understand the substrate specificity of Glu-Q-RS we undertook a systemic approach by investigating the biophysical and biochemical properties of the NGluRS (1–301), CGluRS (314–471) and Glu-Q-RS-CGluRS, (1–298 of Glu-Q-RS fused to 314–471 from GluRS). Circular dichroism, fluorescence spectroscopy and differential scanning calorimetry analyses revealed absence of N-terminal domain (1–298 of Glu-Q-RS) and C-terminal domain (314–471 from GluRS) communication in chimera, in contrast to the native full length GluRS. The chimeric Glu-Q-RS is still able to aminoacylate tRNAAsp but has also the capacity to bind tRNAGlu. However the chimeric protein is unable to aminoacylate tRNAGlu probably as a consequence of the lack of domain–domain communication.  相似文献   
34.
Arylsulfatases allow microorganisms to satisfy their sulfur (S) requirements as inorganic sulfate after sulfate ester hydrolysis. Our objectives were to investigate the arylsulfatase activities among soil isolates, especially Streptomyces sp., Microbacterium sp. and Rhodococcus sp., because such investigations are limited for these bacteria, which often live in sulfate-limited conditions. Physiological and biochemical analyses indicated that these isolates possessed strong specific arylsulfatase activities ranging from 6 to 8 U. Moreover, for Streptomyces sp., an arylsulfatase localization study revealed 2 forms of arylsulfatases. A first form was located in the membrane, and a second form was located in the intracellular compartment. Both arylsulfatases had different patterns of induction. Indeed, the intracellular arylsulfatase was strictly induced by inorganic sulfate limitation, whereas the membrane arylsulfatase was induced both by substrate presence or S demand independently. For Microbacterium and Rhodococcus isolates, only a membrane arylsulfatase was found. Consequently, our results suggest the presence of a previously undescribed arylsulfatase in these microorganisms that allows them to develop an alternative strategy to fulfill their S requirements compared to bacteria previously studied in the literature.  相似文献   
35.
36.
Herbivorous insects use olfactory cues to locate their host plant within a complex olfactory landscape. One such example is the European grapevine moth Lobesia botrana, a key pest of the grape in the Palearctic region, which recently expanded both its geographical and host plant range. Previous studies have showed that a synthetic blend of the three terpenoids, (E)‐β‐caryophyllene, (E)‐β‐farnesene and (E)‐4,8‐dimethyl‐1,3,7‐nonatriene (DMNT), was as attractive for the moth as the complete grape odour profile in laboratory conditions. The same studies also showed that the specific ratio of these compounds in the grape bouquet was crucial because a percentage variation in any of the three volatiles resulted in almost complete inhibition of the blend's attractiveness. Here, we report on the creation of stable grapevine transgenic lines, with modified (E)‐β‐caryophyllene and (E)‐β‐farnesene emission and thus with an altered ratio compared to the original plants. When headspace collections from these plants were tested in wind tunnel behavioural assays, they were less attractive than control extracts. This result was confirmed by testing synthetic blends imitating the ratio found on natural and transformed plants, as well as by testing the plants themselves. With this evidence, we suggest that a strategy based on volatile ratio modification may also interfere with the host‐finding behaviour of L. botrana in the field, creating avenues for new pest control methods.  相似文献   
37.
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号