首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   4篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   7篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   11篇
  2007年   5篇
  2006年   10篇
  2005年   8篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有85条查询结果,搜索用时 125 毫秒
71.
It is widely accepted that the hypothalamic-pituitary-gonadal axis is involved in gonadal sex change in socially controlled sex-changing fish. However, the specific secretion profiles of pituitary gonadotropins (GtHs) in this type of fish are not known. To address this fundamental question, we demonstrated that the diurnal secretion patterns of GtHs differ distinctly between males and females in a socially controlled sex-changing fish. We analyzed the pituitary mRNA levels of glycoprotein hormone subunits (i.e., the common alpha-subunit and specific beta-subunits follicle-stimulating hormone beta, luteinizing hormone beta, and thyroid-stimulating hormone beta) in the wrasse Pseudolabrus sieboldi, which is a model fish that exhibits accurate diurnal rhythms of gametogenesis in both males and females. Northern blots clearly showed that each subunit gene exhibits a diurnal rhythm of expression in the pituitary and that the expression patterns differ distinctly between the sexes. Our results suggest that oogenesis and spermatogenesis in this hermaphroditic fish are regulated differentially through the distinct secretion patterns of pituitary glycoprotein hormones. This study also provides direct evidence of the sexual plasticity of pituitary GtH secretion in a socially controlled sex-changing fish.  相似文献   
72.
While Blood vessel epicardial substance (Bves) confers adhesive properties, the molecular mechanism of regulating this activity is unknown. No predicted functional motifs in this highly conserved integral membrane protein, other than the transmembrane domain, have been identified. Here, we report for the first time that Bves interacts with itself through an intracellular interaction domain that is essential for its intercellular adhesion activity. Glutathione-S-transferase (GST) pull-down and SPOTs analyses mapped this domain to amino acids 268-274 in the intracellular C-terminus. Site-directed mutagenesis revealed that lysines 272 and 273 are essential for homodimerization and cell adhesion. Human corneal cells transfected with wild-type Bves trafficked the protein to the cell surface, assembled junction complexes and formed epithelial sheets. In contrast, cells expressing Bves mutated at these positions did not form continuous epithelial sheets or maintain junctional proteins such as ZO-1 and E-cadherin at the membrane. A dramatic reduction in transepithelial electrical resistance was also observed indicating a functional loss of tight junctions. Importantly, expression of mutated Bves in epithelial cells promoted the transformation of cells from an epithelial to a mesenchymal phenotype. This study is the first to demonstrate the essential nature of any domain within Bves for maintenance of epithelial phenotype and function.  相似文献   
73.
Atrazine is a widely used triazine herbicide. Although controversy still exists, a number of recent studies have described its adverse effects on various animals including humans. Of particular interest is its effects on reproductive capacity. In this study, we investigated the mechanisms underlying the adverse effects of atrazine, with a focus on its effects on sperm. Here we show evidence that mitochondrial F1F0-ATP synthase is a molecular target of atrazine. A series of experiments with sperm and isolated mitochondria suggest that atrazine inhibits mitochondrial function through F1F0-ATP synthase. Moreover, affinity purification using atrazine as a ligand demonstrates that F1F0-ATP synthase is a major atrazine-binding protein in cells. The inhibitory activity against mitochondria and F1F0-ATP synthase is not limited to atrazine but is likely to be applicable to other triazine-based compounds. Thus, our findings may have wide relevance to pharmacology and toxicology.  相似文献   
74.
It has been reported that the transport function for organic anions on the kidney is maintained in multidrug resistance-associated protein 2 (Mrp2)-deficient rats. Different from Mrp2-deficient rats, Long-Evans Cinnamon (LEC) rats have impaired urinary excretion of Mrp2-substrate, phenolsulfonphthalein (PSP). PSP is transported by the potential-sensitive urate transport system in rat brush-border membranes. We analyzed the function of PSP transport system in LEC rats. Unlike Long-Evans Agouti (LEA) rats, the initial uptake of PSP and urate into the renal brush-border membrane vesicles of LEC rats were not significantly enhanced in the presence of positive intravesicular potential, suggesting that the potential-sensitive urate transport system is impaired in LEC rats. LEC rats should be useful for elucidating the potential-sensitive urate transport system in rats at the molecular level.  相似文献   
75.
We incubated different radiolabeled steroid precursors with intact chub mackerel ovarian follicles to clarify the synthetic pathways of steroid hormones during vitellogenesis and following final oocyte maturation (FOM). During vitellogenesis, estradiol-17beta (E2) was synthesized from pregnenolone via 17-hydroxypregnenolone, 17-hydroxyprogesterone, androstenedione, and testosterone. The physiological significance of the intermediate metabolites of E2 in the ovarian follicles was examined by comparing follicular steroidogenesis between gonochoric and hermaphroditic fish species. After vitellogenesis, the steroidogenic pathway shifted from E2 to maturation-inducing hormone (MIH) production owing to the inactivation of 17,20-lyase and the activation of 20 beta-hydroxysteroid dehydrogenase. Of the new steroids produced during FOM, 17,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P) was most effective at inducing germinal vesicle breakdown in vitro. Circulating levels of 17,20beta-P increased specifically around the time of germinal vesicle migration, while another FOM-specific 20beta-hydroxylated progestin, 17,20beta,21-trihydroxy-4-pregnen-3-one, was present at consistently low levels during FOM. These results indicate that 17,20beta-P is the MIH of chub mackerel.  相似文献   
76.
A novel cDNA clone, Tad1, was isolated from crown tissue of winter wheat after differential screening of cold acclimation-induced genes. The Tad1 cDNA encoded a 23kDa polypeptide with a potential N-terminal signal sequence. The putative mature sequence showed striking similarity to plant defensins or gamma-thionins, representing low molecular size antipathogenic polypeptides. High levels of Tad1 mRNA accumulation occurred within one day of cold acclimation in crown tissue and the level was maintained throughout 14 days of cold acclimation. Similar rapid induction was observed in young seedlings treated with low temperature but not with exogenous abscisic acid. In contrast to defensins from other plant species, neither salicylic acid nor methyl jasmonate induced expression of Tad1. The recombinant mature form of TAD1 polypeptide inhibited the growth of the phytopathogenic bacteria, Pseudomonas cichorii; however, no antifreeze activity was detected. Collectively, these data suggested that Tad1 is induced in cold-acclimated winter wheat independent of major defense signaling(s) and is involved in low temperature-induced resistance to pathogens during winter hardening.  相似文献   
77.
The steroid synthesis pathway in the ovarian follicles of the red seabream during final oocyte maturation (FOM) was investigated by incubating intact follicles with different radioactively labeled steroid precursors. During FOM, the steroidogenic shift from estradiol-17beta to 20 beta-hydroxylated progestin production occurred mainly due to a combination of inactivation of C 1720-lyase and activation of 20 beta-hydroxysteroid dehydrogenase. Of the steroids produced, 1720 beta-dihydroxy-4-pregnen-3-one (1720 beta-P) and 1720 beta,21-trihydroxy-4-pregnen-3-one (20 beta-S) exhibited the greatest effect on germinal vesicle breakdown (GVBD) in vitro. 1720 beta-P was further converted to its 5 beta-reduced form, 1720 beta-dihydroxy-5 beta-pregnan-3-one (1720 beta-P-5 beta), which had lower GVBD activity, suggesting that 5 beta-reduction plays a role in the inactivation of the maturation-inducing ability of 1720 beta-P. In contrast, no 5 beta-reduced metabolite of 20 beta-S was found. Serum levels of 1720 beta-P and 20 beta-S, measured by ELISA, showed that circulating levels of both progestins increased during FOM, and 20 beta-S levels were approximately twice as high as 1720 beta-P levels. This study clarified the complete steroidogenesis pathway during FOM in red seabream ovarian follicles and showed that two 20 beta-hydroxylated progestins, 1720 beta-P and 20 beta-S, act as maturation-inducing hormones in this species. The catabolites of these two progestins and their physiological roles in reproduction are also discussed.  相似文献   
78.
Sexually competent females of Telmessus cheiragonus (helmet crab) release two pheromones that elicit grasping and copulation behaviors in males (Kamio et al., 2000, 2002, 2003). Our study aimed to use behavioral and electrophysiological techniques to identify the site of reception of these sex pheromones. In behavioral experiments, either the inner or the outer flagella of the antennules were ablated bilaterally from male crabs, and responses of male crabs to female odor were examined. When the inner flagella were surgically ablated, the sexual response (i.e., grasping and copulation behavior) of male crabs was not significantly changed relative to control animals that had their second antennae ablated. In contrast, the sexual response was significantly reduced when the outer flagella of the antennules were ablated, suggesting that the outer flagellum is the receptor organ that detects the sex pheromones. In electrophysiological experiments, urine, which in females contains the pheromone that elicits grasping behavior by males but does not contain the pheromone eliciting copulation, whose release site is not known, was tested. Female and male urine as well as shrimp extract evoked phasic responses of chemosensory afferents innervating aesthetasc sensilla on the outer flagellum of male crabs. The response of the afferents had significantly higher magnitude and lower threshold when female urine was applied. Thus, behavioral and electrophysiological observations suggest that in male helmet crabs, the outer flagellum of the antennule is the chemosensory organ that detects female sex pheromone.  相似文献   
79.
ABSTRACT: BACKGROUND: The gonadotropins (GtHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are produced in the pituitary gland and regulates gametogenesis through production of gonadal steroids. However, respective roles of two GtHs in the teleosts are still incompletely characterized due to technical difficulties in the purification of native GtHs. METHODS: Native FSH and LH were purified from the pituitaries of adult chub mackerel, Scomber japonicus by anion-exchange chromatography and immunoblotting using specific antisera. The steroidogenic potency of the intact chub mackerel FSH (cmFSH) and LH (cmLH) were evaluated in mid- and late-vitellogenic stage follicles by measuring the level of gonadal steroids, estradiol-17beta (Epsilon2) and 17,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P). In addition, we evaluated the maturation-inducing potency of the GtHs on same stage follicles. RESULTS: Both cmFSH and cmLH significantly stimulated E2 production in mid-vitellogenic stage follicles. In contrast, only LH significantly stimulated the production of 17,20beta-P in late-vitellogenic stage follicles. Similarly, cmLH induced final oocyte maturation (FOM) in late-vitellogenic stage follicles. CONCLUSIONS: Present results indicate that both FSH and LH may regulate vitellogenic processes, whereas only LH initiates FOM in chub mackerel.  相似文献   
80.
The gonadotropins (GtHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), are heterodimers composed of a common α subunit (GPα) and a unique β subunit (FSHβ or LHβ); they are synthesized in and secreted from gonadotrophs (FSH and LH cells) in the pituitary. Little is known about the roles of FSH and LH during spermatogenesis in perciform fishes. In this study, we examined immunoreactive changes in FSH and LH cells, and changes in the gene expression of the three gonadotropin subunits in the pituitary of male chub mackerel Scomber japonicus during testicular development. FSHβ-immunoreactive (ir) and LHβ-ir cell area were measured immuno-histochemically based on the FSH and LH cell-occupying area in the proximal pars distalis. The FSHβ-ir cell area increased significantly during spermiation, while FSHβ mRNA levels, already high at the beginning of spermatogenesis, increased further, peaking during spermiation. In contrast, LHβ-ir cell area and LHβ mRNA levels, which were low at the beginning of spermatogenesis, increased significantly during late spermatogenesis, peaking during spermiation. For both FSH and LH, GtHβ-ir cell area and GtHβ mRNA levels decreased until gonadal resting. GPα mRNA levels showed similar changes to LHβ mRNA levels. These results suggest that in the chub mackerel, FSH may play an important role in the early and late phases of spermatogenesis, and that LH may play a role during late spermatogenesis and spermiation. Moreover, our results demonstrate that changes in GtHβ-ir cell area were accompanied by similar changes in the expression of the FSHβ and LHβ genes, both of which increased during testicular development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号