首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   13篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   6篇
  2014年   7篇
  2013年   7篇
  2012年   11篇
  2011年   13篇
  2010年   3篇
  2009年   4篇
  2008年   7篇
  2007年   6篇
  2006年   10篇
  2005年   6篇
  2004年   13篇
  2003年   1篇
  2002年   5篇
  2001年   4篇
  2000年   8篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1984年   1篇
  1982年   2篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1966年   1篇
  1964年   2篇
  1958年   1篇
  1956年   2篇
  1955年   4篇
  1946年   1篇
排序方式: 共有175条查询结果,搜索用时 236 毫秒
51.
52.

Background

Seven of 15 clinical trial participants treated with a nucleoside analogue (fialuridine [FIAU]) developed acute liver failure. Five treated participants died, and two required a liver transplant. Preclinical toxicology studies in mice, rats, dogs, and primates did not provide any indication that FIAU would be hepatotoxic in humans. Therefore, we investigated whether FIAU-induced liver toxicity could be detected in chimeric TK-NOG mice with humanized livers.

Methods and Findings

Control and chimeric TK-NOG mice with humanized livers were treated orally with FIAU 400, 100, 25, or 2.5 mg/kg/d. The response to drug treatment was evaluated by measuring plasma lactate and liver enzymes, by assessing liver histology, and by electron microscopy. After treatment with FIAU 400 mg/kg/d for 4 d, chimeric mice developed clinical and serologic evidence of liver failure and lactic acidosis. Analysis of liver tissue revealed steatosis in regions with human, but not mouse, hepatocytes. Electron micrographs revealed lipid and mitochondrial abnormalities in the human hepatocytes in FIAU-treated chimeric mice. Dose-dependent liver toxicity was detected in chimeric mice treated with FIAU 100, 25, or 2.5 mg/kg/d for 14 d. Liver toxicity did not develop in control mice that were treated with the same FIAU doses for 14 d. In contrast, treatment with another nucleotide analogue (sofosbuvir 440 or 44 mg/kg/d po) for 14 d, which did not cause liver toxicity in human trial participants, did not cause liver toxicity in mice with humanized livers.

Conclusions

FIAU-induced liver toxicity could be readily detected using chimeric TK-NOG mice with humanized livers, even when the mice were treated with a FIAU dose that was only 10-fold above the dose used in human participants. The clinical features, laboratory abnormalities, liver histology, and ultra-structural changes observed in FIAU-treated chimeric mice mirrored those of FIAU-treated human participants. The use of chimeric mice in preclinical toxicology studies could improve the safety of candidate medications selected for testing in human participants. Please see later in the article for the Editors'' Summary  相似文献   
53.
Sensory and cognitive performance decline with age. Neural dysfunction caused by nerve death in senile dementia and neurodegenerative disease has been intensively studied; however, functional changes in neural circuits during the normal aging process are not well understood. Caspases are key regulators of cell death, a hallmark of age-related neurodegeneration. Using a genetic probe for caspase-3-like activity (DEVDase activity), we have mapped age-dependent neuronal changes in the adult brain throughout the lifespan of Drosophila. Spatio-temporally restricted caspase activation was observed in the antennal lobe and ellipsoid body, brain structures required for olfaction and visual place memory, respectively. We also found that caspase was activated in an age-dependent manner in specific subsets of Drosophila olfactory receptor neurons (ORNs), Or42b and Or92a neurons. These neurons are essential for mediating innate attraction to food-related odors. Furthermore, age-induced impairments of neural transmission and attraction behavior could be reversed by specific inhibition of caspase in these ORNs, indicating that caspase activation in Or42b and Or92a neurons is responsible for altering animal behavior during normal aging.  相似文献   
54.

Introduction

The aim of this study was to investigate the construct validity and test-retest reliability of the International Physical Activity Questionnaire (IPAQ; long form) and the Short QUestionnaire to Assess Health-enhancing physical activity (SQUASH) and to investigate the relation between daily physical activity and clinical assessments in patients with ankylosing spondylitis (AS).

Methods

For validity, the self-report questionnaires IPAQ and SQUASH were compared with daily physical activity assessed with the ActiGraph accelerometer during 7 consecutive days in 63 AS outpatients. For reliability, the IPAQ and SQUASH were administered twice approximately 1 week apart in 52 AS outpatients. In all 115 patients, clinical assessments were performed at the outpatient clinic.

Results

IPAQ and SQUASH total scores correlated significantly with accelerometer outcome: ρ = 0.38 and r = 0.35, respectively. Intraclass correlation coefficients between first and second assessments of the IPAQ and SQUASH were 0.83 and 0.89, respectively. Bland-Altman analyses showed no systemic bias, but in particular for the IPAQ the 95% limits of agreement were wide. Daily physical activity assessed by accelerometer, IPAQ, and SQUASH correlated significantly with disease activity, physical activity, and quality of life. A relation with spinal mobility was found only for the accelerometer and SQUASH. The direction of these correlations indicates that higher daily physical activity is related to lower disease activity and better physical function, spinal mobility and quality of life.

Conclusions

Both physical activity questionnaires showed modest construct validity. The SQUASH showed good test-retest reliability, superior to the IPAQ. These results indicate that the SQUASH is more suitable than the IPAQ to assess daily physical activity in AS population studies. However, it is desirable to add questions on AS-specific physical activity. Further studies are needed to investigate the causality of the relation between daily physical activity and clinical assessments.  相似文献   
55.

Background

PHYVV and PepGMV are plant viruses reported in Mexico and Southern US as causal agents of an important pepper disease known as "rizado amarillo". Mixed infections with PHYVV and PepGMV have been reported in several hosts over a wide geographic area. Previous work suggested that these viruses might interact at the replication and/or movement level in a complex manner. The aim of present report was to study some aspects of a synergistic interaction between PHYVV and PepGMV in pepper plants. These include analyses of symptom severity, viral DNA concentration and tissue localization of both viruses in single and mixed infections.

Results

Mixed infections with PepGMV and PHYVV induced symptoms more severe than those observed in single viral infections. Whereas plants infected with either virus (single infection) presented a remission stage with a corresponding decrease in viral DNA levels, double-infected plants did not present symptom remission and both viral DNA concentrations dramatically increased. In situ hybridization experiments revealed that both viruses are restricted to the vascular tissue. Interestingly, the amount of viral DNA detected was higher in plants inoculated with PepGMV than that observed in PHYVV-infected plants. During mixed infections, the location of both viruses remained similar to the one observed in single infections, although the number of infected cells increases. Infections with the tripartite mixture PHYVV (A+B) + PepGMV A produced a similar synergistic infection to the one observed after inoculation with both full viruses. On the contrary, tripartite mixture PepGMV (A+B) + PHYVV A did not produce a synergistic interaction. In an attempt to study the contribution of individual genes to the synergism, several mutants of PHYVV or PepGMV were inoculated in combination with the corresponding wild type, second virus (wt PepGMV or wt PHYVV). All combinations tested resulted in synergistic infections, with exception of the TrAP mutant of PepGMV (PepGMV TrAP-) + PHYVV.

Conclusion

In this report, we have demonstrated that synergistic interaction between PHYVV and PepGMV during a mixed infection is mainly due to an increased DNA concentration of both viruses, without any noticeable effect on the localization of either virus on infected plant tissue. Our results have shown that the viral component A from PepGMV is important for synergism during PHYVV-PepGMV mixed infections.  相似文献   
56.
Glutathione (GSH) is present in all mammalian tissues and plays a crucial role in many cellular processes. The second and final step in the synthesis involves the formation of GSH from gamma-glutamylcysteine (γ-GC) and glycine and is catalyzed by glutathione synthetase (GS). GS deficiency is a rare autosomal recessive disorder, and is present in patients with a range of phenotypes, from mild hemolytic anemia and metabolic acidosis to severe neurologic disorders or even death in infancy. The substrate for GS, γ-GC, has been suggested as playing a protective role, by substituting for GSH as an antioxidant in GS deficient patients. To examine the role of GS and GSH metabolites in development, we generated mice deficient in GSH by targeted disruption of the GS gene (Gss). Homozygous mice died before embryonic day (E) 7.5, but heterozygous mice survived with no distinct phenotype. GS protein levels and enzyme activity, as well as GSH metabolites, were investigated in multiple tissues. Protein levels and enzyme activity of GS in heterozygous mice were diminished by 50%, while GSH levels remained intact. γ-GC could not be detected in any investigated tissue. These data demonstrate that GSH is essential for mammalian development, and GSH synthesis via GS is an indispensable pathway for survival.  相似文献   
57.
Herein we describe a pathogenic role for the Pseudomonas aeruginosa type three secretion system (T3SS) needle tip complex protein, PcrV, in causing lung endothelial injury. We first established a model in which P. aeruginosa wild type strain PA103 caused pneumonia-induced sepsis and distal organ dysfunction. Interestingly, a PA103 derivative strain lacking its two known secreted effectors, ExoU and ExoT [denoted PA103 (ΔU/ΔT)], also caused sepsis and modest distal organ injury whereas an isogenic PA103 strain lacking the T3SS needle tip complex assembly protein [denoted PA103 (ΔPcrV)] did not. PA103 (ΔU/ΔT) infection caused neutrophil influx into the lung parenchyma, lung endothelial injury, and distal organ injury (reminiscent of sepsis). In contrast, PA103 (ΔPcrV) infection caused nominal neutrophil infiltration and lung endothelial injury, but no distal organ injury. We further examined pathogenic mechanisms of the T3SS needle tip complex using cultured rat pulmonary microvascular endothelial cells (PMVECs) and revealed a two-phase, temporal nature of infection. At 5-hours post-inoculation (early phase infection), PA103 (ΔU/ΔT) elicited PMVEC barrier disruption via perturbation of the actin cytoskeleton and did so in a cell death-independent manner. Conversely, PA103 (ΔPcrV) infection did not elicit early phase PMVEC barrier disruption. At 24-hours post-inoculation (late phase infection), PA103 (ΔU/ΔT) induced PMVEC damage and death that displayed an apoptotic component. Although PA103 (ΔPcrV) infection induced late phase PMVEC damage and death, it did so to an attenuated extent. The PA103 (ΔU/ΔT) and PA103 (ΔPcrV) mutants grew at similar rates and were able to adhere equally to PMVECs post-inoculation indicating that the observed differences in damage and barrier disruption are likely attributable to T3SS needle tip complex-mediated pathogenic differences post host cell attachment. Together, these infection data suggest that the T3SS needle tip complex and/or another undefined secreted effector(s) are important determinants of P. aeruginosa pneumonia-induced lung endothelial barrier disruption.  相似文献   
58.
Homeodomain repressor factor Hesx1/Rpx plays a crucial role in the formation of Rathke's pouch at the start of pituitary organogenesis and represses the Prop-1-dependent expression of Pit-1 gene, which promotes the differentiation of Pit-1-dependent hormone producing cells. Recently, we discovered a novel function of Prop-1 by which it activates the porcine follicle stimulating hormone beta subunit (FSHbeta) gene through Fd2 region (-852/-746). The present study aimed to determine whether Hesx1 exerts its role in the Prop-1-dependent activation of FSHbeta gene. Transient transfection assay for the porcine FSHbeta promoter -985/+10, electrophoretic mobility shift assay (EMSA) and DNase I footprinting analysis for Fd2 region were carried out. Transfection assay in GH3 cells demonstrated that expression of Hesx1 alone does not change the promoter activity but the coexpression with Prop-1 represses the Prop-1-dependent activation of FSHbeta promoter. Similar results were obtained for the mutant reporter vector deleting the region -745/-104 indicating that Fd2 region is a target site of Hesx1 as well as Prop-1. EMSA and DNase I footprinting analysis using recombinant Hesx1 and Prop-1 protein demonstrated that Hesx1 and Prop-1 certainly bind to the AT-rich regions in a different manner. These results suggest that Hesx1 blocks the advanced expression of FSHbeta gene in the early stage of pituitary development, and Prop-1 thereafter appears and activates this gene.  相似文献   
59.
Rajarajan  K  Sakshi  S  Taria  S  Prathima  PT  Radhakrishna  A  Anuragi  H  Ashajyothi  M  Bharati  A  Handa  AK  Arunachalam  A 《Molecular biology reports》2022,49(10):9453-9463
Molecular Biology Reports - Pongamia is considered an important biofuel species worldwide. Drought stress in the early growth stages of Pongamia influences negatively on the germination and...  相似文献   
60.
Mismatch negativity (MMN) is a scalp-recorded electrical potential that occurs in humans in response to an auditory stimulus that defies previously established patterns of regularity. MMN amplitude is reduced in people with schizophrenia. In this study, we aimed to develop a robust and replicable rat model of MMN, as a platform for a more thorough understanding of the neurobiology underlying MMN. One of the major concerns for animal models of MMN is whether the rodent brain is capable of producing a human-like MMN, which is not a consequence of neural adaptation to repetitive stimuli. We therefore tested several methods that have been used to control for adaptation and differential exogenous responses to stimuli within the oddball paradigm. Epidural electroencephalographic electrodes were surgically implanted over different cortical locations in adult rats. Encephalographic data were recorded using wireless telemetry while the freely-moving rats were presented with auditory oddball stimuli to assess mismatch responses. Three control sequences were utilized: the flip-flop control was used to control for differential responses to the physical characteristics of standards and deviants; the many standards control was used to control for differential adaptation, as was the cascade control. Both adaptation and adaptation-independent deviance detection were observed for high frequency (pitch), but not low frequency deviants. In addition, the many standards control method was found to be the optimal method for observing both adaptation effects and adaptation-independent mismatch responses in rats. Inconclusive results arose from the cascade control design as it is not yet clear whether rats can encode the complex pattern present in the control sequence. These data contribute to a growing body of evidence supporting the hypothesis that rat brain is indeed capable of exhibiting human-like MMN, and that the rat model is a viable platform for the further investigation of the MMN and its associated neurobiology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号