首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1284篇
  免费   83篇
  2023年   4篇
  2022年   3篇
  2021年   31篇
  2020年   17篇
  2019年   31篇
  2018年   39篇
  2017年   27篇
  2016年   46篇
  2015年   81篇
  2014年   84篇
  2013年   98篇
  2012年   108篇
  2011年   121篇
  2010年   54篇
  2009年   74篇
  2008年   90篇
  2007年   89篇
  2006年   62篇
  2005年   49篇
  2004年   53篇
  2003年   58篇
  2002年   52篇
  2001年   8篇
  2000年   5篇
  1999年   7篇
  1998年   12篇
  1997年   3篇
  1996年   2篇
  1994年   5篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   5篇
  1975年   1篇
  1974年   4篇
  1969年   1篇
  1968年   2篇
  1967年   2篇
  1965年   2篇
排序方式: 共有1367条查询结果,搜索用时 15 毫秒
141.
Here mitochondrial morphology and dynamics were investigated in Medicago truncatula cell-suspension cultures during growth and senescence. Cell biology techniques were used to measure cell growth and death in culture. Mitochondrial morphology was investigated in vivo using a membrane potential sensor probe coupled with confocal microscopy. Expression of a senescence-associated gene (MtSAG) was evaluated in different cell-growth phases. Mitochondria appeared as numerous, punctuate organelles in cells at the beginning of the subculture cycle, while interconnected networks were observed in actively growing cells. In senescent cells, giant mitochondria were associated with dying cells. The release of cytochrome c from mitochondria was detected in different growth phases of cultured cells. Studies on plant cell cultures allowed us to identify physiological and molecular markers of senescence and cell death, and to associate distinct mitochondrial morphology with cells under different physiological conditions.  相似文献   
142.
Hematopoietic stem and progenitor cells (HSPC), attracted by the chemokine CXCL12, reside in specific niches in the bone marrow (BM). HSPC migration out of the BM is a critical process that underlies modern clinical stem cell transplantation. Here we demonstrate that enforced HSPC egress from BM niches depends critically on the nervous system. UDP-galactose ceramide galactosyltransferase-deficient (Cgt(-/-)) mice exhibit aberrant nerve conduction and display virtually no HSPC egress from BM following granulocyte colony-stimulating factor (G-CSF) or fucoidan administration. Adrenergic tone, osteoblast function, and bone CXCL12 are dysregulated in Cgt(-/-) mice. Pharmacological or genetic ablation of adrenergic neurotransmission indicates that norepinephrine (NE) signaling controls G-CSF-induced osteoblast suppression, bone CXCL12 downregulation, and HSPC mobilization. Further, administration of a beta(2) adrenergic agonist enhances mobilization in both control and NE-deficient mice. Thus, these results indicate that the sympathetic nervous system regulates the attraction of stem cells to their niche.  相似文献   
143.
Lysophosphatidylcholine rapidly paralyses the neuromuscular junction (NMJ), similarly to snake phospholipase A2 neurotoxins, implicating a lipid hemifusion-pore transition in neuroexocytosis. The mode and kinetics of NMJ paralysis of different lysophospholipids (lysoPLs) in high or low [Mg2+] was investigated. The following order of potency was found: lysophosphatidylcholine>lysophosphatidylethanolamine>lysophosphatidic acid>lysophosphatidylserine>lysophosphatidylglycerol. The latter two lysoPLs closely mimic the profile of paralysis caused by the toxins in high [Mg2+]. This paralysis is fully reversed by albumin washing. These findings provide novel insights on the mode of action of snake neurotoxins and qualify lysoPLs as novel agents to study neuroexocytosis.  相似文献   
144.
Multidrug resistance (MDR) phenotype is characterized by the over-expression of P-glycoprotein (P-gp) on cell plasma membranes that extrudes several drugs out of cells. Cells that express the MDR phenotype are resistant to the mitochondrial related apoptosis and to several anticancer drugs. This study assessed the presence of P-gp in mitochondria and its role in parental drug-sensitive (P5) and in P5-derived MDR1 cells P1(0.5) hepatocellular carcinoma (HCC) cell lines and in drug-sensitive (PSI-2) and mdr1-transfected (PN1A) NIH/3T3 cells. By using Western blot analysis, confocal laser microscopy, measurements of Rhodamine 123 transport across mitochondrial membranes, MDR1 small interfering RNA and flow cytometry analysis, experiments indicate that P-gp is expressed in mitochondria of P1(0.5) and PN1A cells and it is functionally active. Rho 123 accumulation was largely reduced in mitochondria of P1(0.5) cells as compared to those of P5 cells; the reduced uptake of fluorescence in mitochondria of MDR cells was due to P-gp-mediated Rho 123 efflux. In conclusion, these data demonstrate that functionally active P-gp is expressed in the mitochondrial membrane of MDR-positive cells and pumps out anticancer drugs from mitochondria into cytosol. Therefore, P-gp could be involved in the protection of mitochondrial DNA from damage due to antiproliferative drugs.  相似文献   
145.
146.
Oxidized phospholipids (OxPLs) are pro‐inflammatory molecules that affect bone remodeling under physiological conditions. Transgenic expression of a single‐chain variable fragment (scFv) of the antigen‐binding domain of E06, an IgM natural antibody that recognizes the phosphocholine (PC) moiety of OxPLs, increases trabecular and cortical bone in adult male and female mice by increasing bone formation. OxPLs increase with age, while natural antibodies decrease. Age‐related bone loss is associated with increased oxidative stress and lipid peroxidation and is characterized by a decline in osteoblast number and bone formation, raising the possibility that increased OxPLs, together with the decline of natural antibodies, contribute to age‐related bone loss. We show here that transgenic expression of E06‐scFv attenuated the age‐associated loss of spinal, femoral, and total bone mineral density in both female and male mice aged up to 22 and 24 months, respectively. E06‐scFv attenuated the age‐associated decline in trabecular bone, but not cortical bone, and this effect was associated with an increase in osteoblasts and a decrease in osteoclasts. Furthermore, RNA‐seq analysis showed that E06‐scFv increased Wnt10b expression in vertebral bone in aged mice, indicating that blocking OxPLs increases Wnt signaling. Unlike age‐related bone loss, E06‐scFv did not attenuate the bone loss caused by estrogen deficiency or unloading in adult mice. These results demonstrate that OxPLs contribute to age‐associated bone loss. Neutralization of OxPLs, therefore, is a promising therapeutic target for senile osteoporosis, as well as atherosclerosis and non‐alcoholic steatohepatitis (NASH), two other conditions shown to be attenuated by E06‐scFv in mice.  相似文献   
147.
Mutations of RAS genes are critical events in the pathogenesis of different human tumors and Ras proteins represent a major clinical target for the development of specific inhibitors to use as anticancer agents. Here we present RasGRF1-derived peptides displaying both in vitro and in vivo Ras inhibitory properties. These peptides were designed on the basis of the down-sizing of dominant negative full-length RasGRF1 mutants. The over-expression of these peptides can revert the phenotype of K-RAS transformed mouse fibroblasts to wild type, as monitored by several independent biological readouts, including Ras-GTP intracellular levels, ERK activity, morphology, proliferative potential and anchorage independent growth. Fusion of the RasGRF1-derived peptides with the Tat protein transduction domain allows their uptake into mammalian cells. Chemically synthesized Tat-fused peptides, reduced to as small as 30 residues on the basis of structural constraints, retain Ras inhibitory activity. These small peptides interfere in vitro with the GEF catalyzed nucleotide dissociation and exchange on Ras, reduce cell proliferation of K-RAS transformed mouse fibroblasts, and strongly reduce Ras-dependent IGF-I-induced migration and invasion of human bladder cancer cells. These results support the use of RasGRF1-derived peptides as model compounds for the development of Ras inhibitory anticancer agents.  相似文献   
148.
Calsequestrin 2 and arrhythmias   总被引:1,自引:0,他引:1  
Calsequestrin is the most abundant Ca-binding protein of the specialized endoplasmic reticulum found in muscle, the sarcoplasmic reticulum (SR). Calsequestrin binds Ca with high capacity and low affinity and importantly contributes to the mobilization of Ca during each contraction both in skeletal and cardiac muscle. Surprisingly, mutations in the gene encoding the cardiac isoform of calsequestrin (Casq2) have been associated with an inherited form of ventricular arrhythmia triggered by emotional or physical stress termed catecholaminergic polymorphic ventricular tachycardia (CPVT). Despite normal cardiac contractility and normal resting ECG, CPVT patients present with a high risk of sudden death at a young age. Here, we review recent new insights regarding the role of calsequestrin in genetic and acquired arrhythmia disorders. Mouse models of CPVT have shed light on the pathophysiological mechanism underlying CPVT. Casq2 is not only a Ca-storing protein as initially hypothesized, but it has a far more complex function in Ca handling and regulating SR Ca release channels. The functional importance of Casq2 interactions with other SR proteins and the importance of alterations in Casq2 trafficking are also being investigated. Reports of altered Casq2 trafficking in animal models of acquired heart diseases such as heart failure suggest that Casq2 may contribute to arrhythmia risk beyond genetic forms of Casq2 dysfunction.  相似文献   
149.
How mutant prion protein (PrP) leads to neurological dysfunction in genetic prion diseases is unknown. Tg(PG14) mice synthesize a misfolded mutant PrP which is partially retained in the neuronal endoplasmic reticulum (ER). As these mice age, they develop ataxia and massive degeneration of cerebellar granule neurons (CGNs). Here, we report that motor behavioral deficits in Tg(PG14) mice emerge before neurodegeneration and are associated with defective glutamate exocytosis from granule neurons due to impaired calcium dynamics. We found that mutant PrP interacts with the voltage-gated calcium channel α(2)δ-1 subunit, which promotes the anterograde trafficking of the channel. Owing to ER retention of mutant PrP, α(2)δ-1 accumulates intracellularly, impairing delivery of the channel complex to the cell surface. Thus, mutant PrP disrupts cerebellar glutamatergic neurotransmission by reducing the number of functional channels in CGNs. These results link intracellular PrP retention to synaptic dysfunction, indicating new modalities of neurotoxicity and potential therapeutic strategies.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号