首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3021篇
  免费   206篇
  国内免费   2篇
  2024年   2篇
  2023年   17篇
  2022年   16篇
  2021年   87篇
  2020年   55篇
  2019年   59篇
  2018年   97篇
  2017年   62篇
  2016年   116篇
  2015年   163篇
  2014年   160篇
  2013年   227篇
  2012年   277篇
  2011年   252篇
  2010年   169篇
  2009年   139篇
  2008年   226篇
  2007年   178篇
  2006年   193篇
  2005年   131篇
  2004年   127篇
  2003年   127篇
  2002年   116篇
  2001年   23篇
  2000年   9篇
  1999年   23篇
  1998年   14篇
  1997年   17篇
  1996年   15篇
  1995年   21篇
  1994年   16篇
  1993年   10篇
  1992年   15篇
  1991年   8篇
  1990年   4篇
  1989年   8篇
  1987年   6篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1982年   8篇
  1981年   5篇
  1980年   4篇
  1975年   2篇
  1974年   4篇
  1972年   3篇
  1970年   1篇
  1969年   1篇
  1961年   1篇
  1954年   1篇
排序方式: 共有3229条查询结果,搜索用时 31 毫秒
991.
Detecting similarities between ligand binding sites in the absence of global homology between target proteins has been recognized as one of the critical components of modern drug discovery. Local binding site alignments can be constructed using sequence order-independent techniques, however, to achieve a high accuracy, many current algorithms for binding site comparison require high-quality experimental protein structures, preferably in the bound conformational state. This, in turn, complicates proteome scale applications, where only various quality structure models are available for the majority of gene products. To improve the state-of-the-art, we developed eMatchSite, a new method for constructing sequence order-independent alignments of ligand binding sites in protein models. Large-scale benchmarking calculations using adenine-binding pockets in crystal structures demonstrate that eMatchSite generates accurate alignments for almost three times more protein pairs than SOIPPA. More importantly, eMatchSite offers a high tolerance to structural distortions in ligand binding regions in protein models. For example, the percentage of correctly aligned pairs of adenine-binding sites in weakly homologous protein models is only 4–9% lower than those aligned using crystal structures. This represents a significant improvement over other algorithms, e.g. the performance of eMatchSite in recognizing similar binding sites is 6% and 13% higher than that of SiteEngine using high- and moderate-quality protein models, respectively. Constructing biologically correct alignments using predicted ligand binding sites in protein models opens up the possibility to investigate drug-protein interaction networks for complete proteomes with prospective systems-level applications in polypharmacology and rational drug repositioning. eMatchSite is freely available to the academic community as a web-server and a stand-alone software distribution at http://www.brylinski.org/ematchsite.
This is a PLOS Computational Biology Software Article
  相似文献   
992.
This study continues our earlier findings on the hematopoiesis-modulating effects of adenosine A1 and A3 receptor agonists that were performed on committed hematopoietic progenitor and precursor cell populations. In the earlier experiments, N 6-cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, was found to inhibit proliferation in the above-mentioned hematopoietic cell systems, whereas N 6-(3-iodobenzyl)adenosine-5′-N-methyluronamide (IB-MECA), an adenosine A3 receptor agonist, was found to stimulate it. The topic of this study was to evaluate the possibility that the above-mentioned adenosine receptor agonists modulate the behavior of early hematopoietic progenitor cells and hematopoietic stem cells. Flow cytometric analysis of hematopoietic stem cells in mice was employed, as well as a functional test of hematopoietic stem and progenitor cells (HSPCs). These techniques enabled us to study the effect of the agonists on both short-term repopulating ability and long-term repopulating ability, representing multipotent progenitors and hematopoietic stem cells, respectively. In a series of studies, we did not find any significant effect of adenosine agonists on HSPCs in terms of their numbers, proliferation, or functional activity. Thus, it can be concluded that CPA and IB-MECA do not significantly influence the primitive hematopoietic stem and progenitor cell pool and that the hematopoiesis-modulating action of these adenosine receptor agonists is restricted to more mature compartments of hematopoietic progenitor and precursor cells.  相似文献   
993.
Abstract

Three methods for the functionalization of oligonucleotides with aminoalkyl moieties have been developed and their efficiencies were evaluated in the preparation of non-radioactive hybridization probes.

  相似文献   
994.
Efficiency and stereoselectivity of condensations of ribonucleoside 3′-H-phosphonates with ethanol promoted by pivaloyl chloride were investigated as a function of tertiary amines used. Side reactions leading to an increased demand for the condensing agent were identified as derived from an attack of the pivalate anion at carbonyl centers of reactive pivaloyl derivatives. The conditions that secured quantitative yields of H-phosphonate diester condensations were assessed. Several tertiary amines promoted condensations with stereoselectivity higher than that observed for pyridine derivatives. A correlation between diastereoselectivity of the product formation and Brønsted and H-bonding basicities of the amine used was found.  相似文献   
995.
996.
997.
Recently, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) has been shown to be a potential candidate for cancer therapy. TRAIL induces apoptosis in various cancer cells but not in normal tissues. Here we show that HCT116 and SW480 cells with a deficient mitochondrial apoptotic pathway were resistant to TRAIL-induced apoptosis, whereas HCT116 and SW480 cells with a functional mitochondrial apoptotic pathway underwent apoptosis upon exposure to TRAIL. Surprisingly, TRAIL induced phenotypic changes in cells with a dysfunctional mitochondrial apoptotic pathway, including membrane blebbing and a transient loss of adhesion properties to the substratum. Accordingly, TRAIL stimulated the ability of these cells to migrate. This behavior was the consequence of a transient TRAIL-induced ROCK1 cleavage. In addition, we report that Bax-deficient HCT116 cells exposed to TRAIL for a prolonged period lost their sensitivity to TRAIL as a result of downregulation of TRAIL receptor expression, and became resistant to combination of TRAIL and other drugs such as MG-132 and bortezomib. These findings may have important consequences for TRAIL anti-cancer therapy.  相似文献   
998.
TNF-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic ligand from the TNF-alpha family that is under consideration, along with agonistic anti-TRAIL receptor antibodies, as a potential anti-tumor agent. However, most primary human tumors are resistant to monotherapy with TRAIL apoptogens, and thus the potential applicability of TRAIL in anti-tumor therapy ultimately depends on its rational combination with drugs targeting these resistances. In our high-throughput screening for novel agents/drugs that could sensitize TRAIL-resistant colorectal cancer cells to TRAIL-induced apoptosis, we found homoharringtonine (HHT), a cephalotaxus alkaloid and tested anti-leukemia drug, to be a very effective, low nanomolar enhancer of TRAIL-mediated apoptosis/growth suppression of these resistant cells. Co-treatment of TRAIL-resistant RKO or HT-29 cells with HHT and TRAIL led to the effective induction of apoptosis and the complete elimination of the treated cells. HHT suppressed the expression of the anti-apoptotic proteins Mcl-1 and cFLIP and enhanced the TRAIL-triggered activation of JNK and p38 kinases. The shRNA-mediated down-regulation of cFLIP or Mcl-1 in HT-29 or RKO cells variably enhanced their TRAIL-induced apoptosis but it did not markedly sensitize them to TRAIL-mediated growth suppression. However, with the notable exception of RKO/sh cFLIP cells, the downregulation of cFLIP or Mcl-1 significantly lowered the effective concentration of HHT in HHT + TRAIL co-treatment. Combined HHT + TRAIL therapy also led to the strong suppression of HT-29 tumors implanted into immunodeficient mice. Thus, HHT represents a very efficient enhancer of TRAIL-induced apoptosis with potential application in TRAIL-based, anti-cancer combination therapy.  相似文献   
999.
Epinephrine (E) and sympathetic nerve stimulation were described by Thomas Renton Elliott in 1905 for the first time. Dopamine (DA), norepinephrine (NE), E, and serotonin (5-HT) belong to the classic biogenic amines (or monoamines). Parkinson’s disease (PD) is among the diseases in which it has been established that catecholamines may account for the neurodegeneration of central and peripheral catecholamine neural systems. PD is a chronic and progressive neurological disorder characterized by resting tremor, rigidity, and bradykinesia, affecting 2% of individuals above the age of 65 years. This disorder is a result of degeneration of DA-producing neurons of the substantia nigra and a significant loss of noradrenergic neurons in the locus coeruleus. In PD and other related neurodegerative diseases, catecholamines play the role of endogenous neurotoxins. Catechol-O-methyltransferase (COMT) and/or monoamine oxidase (MAO) catalyze the metabolism of monoamines. However, the monoamine transporters for DA, NE, and 5-HT namely DAT, NET, and SERT, respectively regulate the monoamine concentration. The metabolism of catecholamines and 5-HT involves common factors. Monoamine transporters represent targets for many pharmacological agents that affect brain function, including psychostimulators and antidepressants. In PD, polymorphisms of the COMT, MAO, DAT, NET, and 5- HTT genes may change the levels of biogenic amines and their metabolic products. The currently available therapies for PD improve the symptoms but do not halt the progression of the disease. The most effective treatment for PD patients is therapy with L-dopa. Combined therapy for PD involves a DA agonist and decarboxylase, MAOs and COMT inhibitors, and is the current optimal form of PD treatment maintaining monoamine balance.  相似文献   
1000.
Macrophages and dendritic cells continuously survey their environment in search of foreign particles and soluble antigens. Such surveillance involves the ongoing extension of actin-rich protrusions and the consequent formation of phagosomes and macropinosomes. The signals inducing this constitutive cytoskeletal remodeling have not been defined. We report that, unlike nonphagocytic cells, macrophages and immature dendritic cells have elevated levels of phosphatidic acid (PA) in their plasma membrane. The plasmalemmal PA is synthesized by phosphorylation of diacylglycerol, which is in turn generated by a G protein–stimulated phospholipase C. Inhibition of diacylglycerol kinase activity results in the detachment of T-cell lymphoma invasion and metastasis–inducing protein 1 (TIAM1)—a Rac guanine exchange factor—from the plasma membrane, thereby depressing Rac activity and abolishing the constitutive ruffling and macropinocytosis that characterize macrophages and immature dendritic cells. Accumulation of PA and binding of TIAM1 to the membrane require the activity of phosphatidylinositol-4,5-bisphosphate 3-kinase. Thus a distinctive, constitutive pathway of PA biosynthesis promotes the actin remodeling required for immune surveillance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号