首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3137篇
  免费   210篇
  国内免费   2篇
  2024年   2篇
  2023年   19篇
  2022年   21篇
  2021年   90篇
  2020年   56篇
  2019年   62篇
  2018年   97篇
  2017年   64篇
  2016年   118篇
  2015年   166篇
  2014年   167篇
  2013年   233篇
  2012年   281篇
  2011年   261篇
  2010年   181篇
  2009年   147篇
  2008年   227篇
  2007年   181篇
  2006年   193篇
  2005年   136篇
  2004年   132篇
  2003年   129篇
  2002年   119篇
  2001年   26篇
  2000年   13篇
  1999年   23篇
  1998年   16篇
  1997年   17篇
  1996年   16篇
  1995年   21篇
  1994年   17篇
  1993年   10篇
  1992年   23篇
  1991年   10篇
  1990年   8篇
  1989年   10篇
  1987年   6篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   8篇
  1981年   7篇
  1980年   4篇
  1974年   4篇
  1972年   3篇
  1970年   2篇
  1968年   1篇
  1961年   1篇
  1954年   1篇
排序方式: 共有3349条查询结果,搜索用时 15 毫秒
991.
We investigated the importance of water chemistry and water regime for vascular plant and bryophyte species distribution in Western Carpathian mires dominated bySphagnum. Seventy-seven small circle plots distributed across a wide geographical area, a wide range of mineral richness and all possible microtopographical features were sampled in terms of species composition, physical-chemical water properties and water regime during one growing season. Both water chemistry and water regime were found to be important factors for vegetation composition. Bryophytes reflected only one clear gradient, connected to base-richness (pH, conductivity) and maximal water-level, whereas three different environmental gradients determined the occurrence of vascular plants: water-level amplitude, base-richness and an indistinct gradient presumably connected to peat layer thickness. When the entire data set was subjected to DCA ordination, the first resulting axis was governed by the bryophyte subset, whereas the second one was governed by the vascular plant subset. The species density of vascular plants was positively correlated with pH and conductivity. On the contrary, bryophyte species density showed no relationship to environmental factors. We further compared the pH values measured in groundwater and in water squeezed from bryophytes from the same plot; these plots were distributed along the base-richness gradient. Only in the acidic mires did the use of squeezed-water chemistry in the analyses give results similar to the use of groundwater pH. Further, we found thatSphagnum species with a similar response to the base-richness gradient had differentiated niches with respect to the water level gradient and vice versa.Sphagnum contortum andS. warnstorfii exhibiting the same demands for groundwater pH were segregated along the gradient of maximum water level. An analogous pattern was detected for acidophilous speciesSphagnum magellanicum andS. papillosum.  相似文献   
992.
All eukaryotic mRNAs possess a 5'-cap (m(7)GpppN) that is recognized by a family of cap-binding proteins. These participate in various processes, such as RNA transport and stabilization, as well as in assembly of the translation initiation complex. The 5'-cap of trypanosomatids is complex; in addition to 7-methyl guanosine, it includes unique modifications on the first four transcribed nucleotides, and is thus denoted cap-4. Here we analyze a cap-binding protein of Leishmania, in an attempt to understand the structural features that promote its binding to this unusual cap. LeishIF4E-1, a homolog of eIF4E, contains the conserved cap-binding pocket, similar to its mouse counterpart. The mouse eIF4E has a higher K(as) for all cap analogs tested, as compared with LeishIF4E-1. However, whereas the mouse eIF4E shows a fivefold higher affinity for m(7)GTP than for a chemically synthesized cap-4 structure, LeishIF4E-1 shows similar affinities for both ligands. A sequence alignment shows that LeishIF4E-1 lacks the region that parallels the C terminus in the murine eIF4E. Truncation of this region in the mouse protein reduces the difference that is observed between its binding to m(7)GTP and cap-4, prior to this deletion. We hypothesize that variations in the structure of LeishIF4E-1, possibly also the absence of a region that is homologous to the C terminus of the mouse protein, promote its ability to interact with the cap-4 structure. LeishIF4E-1 is distributed in the cytoplasm, but its function is not clear yet, because it cannot substitute the mammalian eIF4E in a rabbit reticulocyte in vitro translation system.  相似文献   
993.
Using DECODER (direction exchange with correlation for orientation distribution evaluation and reconstruction) NMR, we probe the orientations of carbonyl carbons in [1-(13)C]glycine-labeled dragline silk under conditions of varying strain and fiber draw rate. A model-specific reconstruction of the molecular orientation distribution incorporating beta sheets and polyglycine II helices indicates that the structures' alignment along the fiber can be described by a pair of Gaussian distributions with full width at half-maxima of 20 and 68 degrees and approximately 45 and approximately 55% relative contributions to the signal intensity. The alignment along the fiber was found to change appreciably when the drawing tension on the fiber was relaxed in a sample drawn at 4 cm/s while little change was observed in a sample drawn at 2 cm/s. The degree of alignment along the fiber was found to increase with fiber draw rate.  相似文献   
994.
The newly developed immobilized enzyme reactors (IMERs) with proteolytic enzymes chymotrypsin, trypsin or papain were used for specific fragmentation of high molecular-mass and heterogeneous glycoproteins immunoglobulin G (IgG) and crystallizable fragment of IgG (Fc). The efficiency of splitting or digestion were controlled by RP-HPLC. The specificity of digestion by trypsin reactor was controlled by MS. IMERs (trypsin immobilized on magnetic microparticles focused in a channel of magnetically active microfluidic device) was used for digestion of the whole IgG molecule. The sufficient conditions for IgG digestion in microfluidic device (flow rate, ratio S:E, pH, temperature) were optimized. It was confirmed that the combination of IMERs with microfluidic device enables efficient digestion of highly heterogeneous glycoproteins such as IgG in extremely short time and minimal reaction volume.  相似文献   
995.
Thermotropic polyurethanes with mesogenic groups in side chains were prepared from two diisocyanates and four diols with stoichiometric ratios of reactive isocyanate (NCO) and hydroxy (OH) groups. Their thermal behavior was determined by differential scanning calorimetry. The effect of structure modifications of the diisocyanates and diols, in particular changes in the mesogen, were investigated. Introduction of mesogenic segments into the polymers suppresses the ordering. Stiff end substituents (phenyl and alkoxy groups) of the mesogens stabilize the mesophases to such an extent that the negative influence of long polymer chains is compensated and the liquid-crystalline properties are recovered. All-atom molecular dynamics simulations in the Cerius2 modeling environment were carried out to characterize the structures of the polymers. Analysis of the dynamic trajectories at 20, 100, 120 and 170 °C revealed changes in conformation of macromolecules, which correlate with DSC measurements.Figure Example of structure relaxation of D4/TDI molecule at indicated simulation times (temperature 20 °C): a complete structure; b backbone structure; c top view of molecule  相似文献   
996.
997.
Siman-Tov MM  Ivens AC  Jaffe CL 《Gene》2002,288(1-2):65-75
Leishmania are protozoan parasites that cause extensive morbidity and mortality in humans. Genes for two new isoforms of the protein kinase A catalytic subunit (PKAC) in Leishmania, Lmpkac2a and Lmpkac2b, were cloned and characterized. The predicted open reading frames for these isoforms are 93.4% identical over 338 amino acids (aa). The conserved PK catalytic cores (subdomains I-XI) are identical, while the carboxy-terminal extensions differ by only two aa. However, LmPKAC2 shares only 62% identity over the 255 aa catalytic core region with the previously described LmPKAC1 (c-lpk2). Unlike LmPKAC1, the location of the FXXF motif at the carboxy-terminus is conserved in both LmPKAC2 isoforms; however, the aa sequence, LXXF, in isoform-2a is unusual. The leishmanial isoforms can be distinguished by their NH(2)-terminal extensions, which show minimal similarity at the primary sequence level. Structural analysis of the three enzymes based on the crystal structure of mammalian PKAs predicts that both LmPKAC2 isoforms, unlike LmPKAC1, have identical alpha-helix structures in the NH(2)-terminal extension. Lmpkac2 genes are located on chromosome 35 just downstream from the leishmanial prp8 gene. This genomic organization is conserved in two species of Leishmania and Crithidia fasciculata and allowed for the partial analysis of Cfpkac2a. Phylogenetic analysis groups the two LmPKAC2 isoforms together and separately from LmPKAC1, which is more similar to the Euglena gracilis PKAC, EPK2. These findings provide the basis for additional studies on the role of the PKA family in parasite differentiation and virulence.  相似文献   
998.
mRNA 5'-cap recognition by the eukaryotic translation initiation factor eIF4E has been exhaustively characterized with the aid of a novel fluorometric, time-synchronized titration method, and X-ray crystallography. The association constant values of recombinant eIF4E for 20 different cap analogues cover six orders of magnitude; with the highest affinity observed for m(7)GTP (approximately 1.1 x 10(8) M(-1)). The affinity of the cap analogues for eIF4E correlates with their ability to inhibit in vitro translation. The association constants yield contributions of non-covalent interactions involving single structural elements of the cap to the free energy of binding, giving a reliable starting point to rational drug design. The free energy of 7-methylguanine stacking and hydrogen bonding (-4.9 kcal/mol) is separate from the energies of phosphate chain interactions (-3.0, -1.9, -0.9 kcal/mol for alpha, beta, gamma phosphates, respectively), supporting two-step mechanism of the binding. The negatively charged phosphate groups of the cap act as a molecular anchor, enabling further formation of the intermolecular contacts within the cap-binding slot. Stabilization of the stacked Trp102/m(7)G/Trp56 configuration is a precondition to form three hydrogen bonds with Glu103 and Trp102. Electrostatically steered eIF4E-cap association is accompanied by additional hydration of the complex by approximately 65 water molecules, and by ionic equilibria shift. Temperature dependence reveals the enthalpy-driven and entropy-opposed character of the m(7)GTP-eIF4E binding, which results from dominant charge-related interactions (DeltaH degrees =-17.8 kcal/mol, DeltaS degrees= -23.6 cal/mol K). For recruitment of synthetic eIF4GI, eIF4GII, and 4E-BP1 peptides to eIF4E, all the association constants were approximately 10(7) M(-1), in decreasing order: eIF4GI>4E-BP1>eIF4GII approximately 4E-BP1(P-Ser65) approximately 4E-BP1(P-Ser65/Thr70). Phosphorylation of 4E-BP1 at Ser65 and Thr70 is insufficient to prevent binding to eIF4E. Enhancement of the eIF4E affinity for cap occurs after binding to eIF4G peptides.  相似文献   
999.
The ERKs are a subfamily of the MAPKs that have been implicated in cell growth and differentiation. By using the rat ERK7 cDNA to screen a human multiple tissue cDNA library, we identified a new member of the ERK family, ERK8, that shares 69% amino acid sequence identity with ERK7. Northern analysis demonstrates that ERK8 is present in a number of tissues with maximal expression in the lung and kidney. Fluorescence in situ hybridization localized the ERK8 gene to chromosome 8, band q24.3. Expression of ERK8 in COS cells and bacteria indicates that, in contrast to constitutively active ERK7, ERK8 has minimal basal kinase activity and a unique substrate profile. ERK8, which contains two SH3-binding motifs in its C-terminal region, associates with the c-Src SH3 domain in vitro and co-immunoprecipitates with c-Src in vivo. Co-transfection with either v-Src or a constitutively active c-Src increases ERK8 activation indicating that ERK8 can be activated downstream of c-Src. ERK8 is also activated following serum stimulation, and the extent of this activation is reduced by pretreatment with the specific Src family inhibitor PP2. The ERK8 activation by serum or Src was not affected by the MEK inhibitor U0126 indicating that activation of ERK8 does not require MEK1, MEK2, or MEK5. Although most closely related to ERK7, the relatively low sequence identity, minimal basal activity, and different substrate profile identify ERK8 as a distinct member of the MAPK family that is activated by an Src-dependent signaling pathway.  相似文献   
1000.
Changes in lipid metabolism are an important risk factor for vascular complications during chronic renal failure (CRF). In experimental CRF hypercholesterolemia has been found to be the main lipid disorder. It is probably due to enhanced cholesterologenesis. Mechanisms of these changes remain poorly understood. It is well known that activity of cholesterologenesis undergoes a significant diurnal rhythm. However, there was no evidence that this rhythm is still present in the course of experimental CRF. Results of our studies indicate that in contrast to puromycin induced nephrotic syndrome, diurnal rhythm of cholesterologenesis in CRF rats is preserved both in liver and in the intestine tissue. Significant higher incorporation of tritiated water into cholesterol fraction was found in vivo both in liver as well as in intestine of CRF rats, as compared to control animals. Increased (with comparison to the controls) incorporation of 14C-acetate, and 3H-mevalonate into CRF rat liver sterols indicate that mechanism of enhanced cholesterologenesis is more complex than simply due to the elevated level of mevalonate (potential substrate for cholesterologenesis) which has been reported in plasma of CRF animals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号