首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1795篇
  免费   161篇
  2023年   8篇
  2022年   9篇
  2021年   50篇
  2020年   34篇
  2019年   44篇
  2018年   52篇
  2017年   39篇
  2016年   72篇
  2015年   117篇
  2014年   127篇
  2013年   123篇
  2012年   172篇
  2011年   162篇
  2010年   104篇
  2009年   75篇
  2008年   114篇
  2007年   107篇
  2006年   93篇
  2005年   91篇
  2004年   90篇
  2003年   66篇
  2002年   66篇
  2001年   21篇
  2000年   11篇
  1999年   16篇
  1998年   12篇
  1997年   13篇
  1996年   9篇
  1995年   8篇
  1994年   8篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1966年   1篇
  1955年   1篇
排序方式: 共有1956条查询结果,搜索用时 15 毫秒
981.
The p53 family includes three members that share significant sequence homology, yet exhibit fundamentally different functions in tumorigenesis. Whereas p53 displays all characteristics of a classical tumor suppressor, its homologues p63 and p73 do not. We have previously shown, that NH(2)-terminally truncated isoforms of p73 (Delta TA-p73), which act as dominant-negative inhibitors of p53 are frequently overexpressed in cancer cells. Here we provide evidence that Delta TA-p73 isoforms also affect the retinoblastoma protein (RB) tumor suppressor pathway independent of p53. Delta TA-p73 isoforms inactivate RB by increased phosphorylation, resulting in enhanced E2F activity and proliferation of fibroblasts. By inactivating the two major tumor suppressor pathways in human cells they act functionally analogous to several viral oncoproteins. These findings provide an explanation for the fundamentally different functions of p53 and p73 in tumorigenesis.  相似文献   
982.
983.
984.
Cryptic rearrangements involving the terminal regions of chromosomes are suspected to be the cause of idiopathic mental retardation in a significant number of cases. This finding highlights the necessity of a primary screening test for such chromosome aberrations. Here we present a multiplex fluorescence in situ hybridization telomere integrity assay which allows the detection of submicroscopic aberrations in the telomeric regions of all chromosomes. This novel approach identified an unbalanced cryptic translocation der(5)t(3;5)(q27;p15.3) in a family with three cases of unexplained mental retardation and dysmorphic features. The symptoms of the patients represent neither the classical dup(3q)- nor cri du chat syndrome, although all affected individuals demonstrate several features of both syndromes. The identification of two balanced translocation carriers emphasizes the significance of the telomere integrity assay for genetic counseling and prenatal diagnosis.  相似文献   
985.
Collins and De Luca [Collins JJ, De Luca CJ (1993) Exp Brain Res 95: 308–318] introduced a new method known as stabilogram diffusion analysis that provides a quantitative statistical measure of the apparently random variations of center-of-pressure (COP) trajectories recorded during quiet upright stance in humans. This analysis generates a stabilogram diffusion function (SDF) that summarizes the mean square COP displacement as a function of the time interval between COP comparisons. SDFs have a characteristic two-part form that suggests the presence of two different control regimes: a short-term open-loop control behavior and a longer-term closed-loop behavior. This paper demonstrates that a very simple closed-loop control model of upright stance can generate realistic SDFs. The model consists of an inverted pendulum body with torque applied at the ankle joint. This torque includes a random disturbance torque and a control torque. The control torque is a function of the deviation (error signal) between the desired upright body position and the actual body position, and is generated in proportion to the error signal, the derivative of the error signal, and the integral of the error signal [i.e. a proportional, integral and derivative (PID) neural controller]. The control torque is applied with a time delay representing conduction, processing, and muscle activation delays. Variations in the PID parameters and the time delay generate variations in SDFs that mimic real experimental SDFs. This model analysis allows one to interpret experimentally observed changes in SDFs in terms of variations in neural controller and time delay parameters rather than in terms of open-loop versus closed-loop behavior. Received: 13 August 1998 / Accepted in revised form: 12 November 1999  相似文献   
986.
Sphingosine-1-phosphate (S1P) receptors are widely expressed in the central nervous system where they are thought to regulate glia cell function. The phosphorylated version of fingolimod/FTY720 (FTY720P) is active on a broad spectrum of S1P receptors and the parent compound is currently in phase III clinical trials for the treatment of multiple sclerosis. Here, we aimed to identify which cell type(s) and S1P receptor(s) of the central nervous system are targeted by FTY720P. Using calcium imaging in mixed cultures from embryonic rat cortex we show that astrocytes are the major cell type responsive to FTY720P in this assay. In enriched astrocyte cultures, we detect expression of S1P1 and S1P3 receptors and demonstrate that FTY720P activates Gi protein-mediated signaling cascades. We also show that FTY720P as well as the S1P1-selective agonist SEW2871 stimulate astrocyte migration. The data indicate that FTY720P exerts its effects on astrocytes predominantly via the activation of S1P1 receptors, whereas S1P signals through both S1P1 and S1P3 receptors. We suggest that this distinct pharmacological profile of FTY720P, compared with S1P, could play a role in the therapeutic effects of FTY720 in multiple sclerosis.  相似文献   
987.
Expansion of the neocortex requires symmetric divisions of neuroepithelial cells, the primary progenitor cells of the developing mammalian central nervous system. Symmetrically dividing neuroepithelial cells are known to form a midbody at their apical (rather than lateral) surface. We show that apical midbodies of neuroepithelial cells concentrate prominin-1 (CD133), a somatic stem cell marker and defining constituent of a specific plasma membrane microdomain. Moreover, these apical midbodies are released, as a whole or in part, into the extracellular space, yielding the prominin-1-enriched membrane particles found in the neural tube fluid. The primary cilium of neuroepithelial cells also concentrates prominin-1 and appears to be a second source of the prominin-1-bearing extracellular membrane particles. Our data reveal novel origins of extracellular membrane traffic that enable neural stem and progenitor cells to avoid the asymmetric inheritance of the midbody observed for other cells and, by releasing a stem cell membrane microdomain, to potentially influence the balance of their proliferation versus differentiation.  相似文献   
988.
Ubiquitin-dependent proteolytic control of SUMO conjugates   总被引:5,自引:0,他引:5  
Posttranslational protein modification with small ubiquitin-related modifier (SUMO) is an important regulatory mechanism implicated in many cellular processes, including several of biomedical relevance. We report that inhibition of the proteasome leads to accumulation of proteins that are simultaneously conjugated to both SUMO and ubiquitin in yeast and in human cells. A similar accumulation of such conjugates was detected in Saccharomyces cerevisiae ubc4 ubc5 cells as well as in mutants lacking two RING finger proteins, Ris1 and Hex3/Slx5-Slx8, that bind to SUMO as well as to the ubiquitin-conjugating enzyme Ubc4. In vitro, Hex3-Slx8 complexes promote Ubc4-dependent ubiquitylation. Together these data identify a previously unrecognized pathway that mediates the proteolytic down-regulation of sumoylated proteins. Formation of substrate-linked SUMO chains promotes targeting of SUMO-modified substrates for ubiquitin-mediated proteolysis. Genetic and biochemical evidence indicates that SUMO conjugation can ultimately lead to inactivation of sumoylated substrates by polysumoylation and/or ubiquitin-dependent degradation. Simultaneous inhibition of both mechanisms leads to severe phenotypic defects.  相似文献   
989.
Infection with various human papillomaviruses (HPVs) induces cervical cancers. Cell surface heparan sulfates (HS) have been shown to serve as primary attachment receptors, and molecules with structural similarity to cell surface HS, like heparin, function as competitive inhibitors of HPV infection. Here we demonstrate that the N,N'-bisheteryl derivative of dispirotripiperazine, DSTP27, efficiently blocks papillomavirus infection by binding to HS moieties, with 50% inhibitory doses of up to 0.4 mug/ml. In contrast to short-term inhibitory effects of heparin, pretreatment of cells with DSTP27 significantly reduced HPV infection for more than 30 h. Using DSTP27 and heparinase, we furthermore demonstrate that HS moieties, rather than laminin 5, present in the extracellular matrix (ECM) secreted by keratinocytes are essential for infectious transfer of ECM-bound virions to cells. Prior binding to ECM components, especially HS, partially alleviated the requirement for cell surface HS. DSTP27 blocks infection by cell-bound virions by feeding into a noninfectious entry pathway. Under these conditions, virus colocalized with HS moieties in endocytic vesicles. Similarly, postattachment treatment of cells with heparinase, cytochalasin D, or neutralizing antibodies resulted in uptake of virions without infection, indicating that deviation into a noninfectious entry pathway is a major mode of postattachment neutralization. In untreated cells, initial colocalization of virions with HS on the cell surface and in endocytic vesicles was lost with time. Our data suggest that initial attachment of HPV to HS proteoglycans (HSPGs) must be followed by secondary interaction with additional HS side chains and transfer to a non-HSPG receptor for successful infection.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号