首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8067篇
  免费   712篇
  国内免费   733篇
  2024年   21篇
  2023年   96篇
  2022年   193篇
  2021年   380篇
  2020年   342篇
  2019年   408篇
  2018年   354篇
  2017年   264篇
  2016年   371篇
  2015年   539篇
  2014年   597篇
  2013年   615篇
  2012年   800篇
  2011年   704篇
  2010年   430篇
  2009年   397篇
  2008年   454篇
  2007年   388篇
  2006年   340篇
  2005年   290篇
  2004年   255篇
  2003年   217篇
  2002年   180篇
  2001年   120篇
  2000年   102篇
  1999年   81篇
  1998年   43篇
  1997年   49篇
  1996年   47篇
  1995年   38篇
  1994年   38篇
  1993年   30篇
  1992年   36篇
  1991年   30篇
  1990年   27篇
  1989年   28篇
  1988年   20篇
  1987年   15篇
  1985年   8篇
  1984年   10篇
  1983年   15篇
  1982年   8篇
  1980年   8篇
  1976年   8篇
  1973年   10篇
  1972年   14篇
  1971年   10篇
  1970年   10篇
  1968年   10篇
  1967年   8篇
排序方式: 共有9512条查询结果,搜索用时 352 毫秒
51.
草鱼出血病病毒多肽的荧光染色   总被引:1,自引:0,他引:1  
王炜  陈延 《Virologica Sinica》1994,9(2):157-159
将草鱼出血病病毒(GrassCarpHemorrhageVirus,GCHV)置于还原性的溶液中,然后加入等体积的NaHCO3配制的异硫氰酸荧光索溶液进行多肽的标记,再经SDS-PAGE分析,在紫外灯下即可检测到GCHV全部的11个结构多肽的荧光带。该方法最小检测量为500ng,由该方法回收的多肽具有抗原活性,可作为抗原进行免疫学实验。  相似文献   
52.
The thymidylate synthase (TS) gene is expressed at much higher levels in proliferating cells than in quiescent cells. We have been studying the sequences that are important for regulating the mouse TS gene. We previously showed that DNA sequences upstream of the essential promoter elements as well as downstream of the ATG codon are both necessary (but neither is sufficient) for normal regulation in growth-stimulated cells. In the present study, we examined the possible roles of the coding region, polyadenylation signal, and introns as downstream regulatory elements. Minigenes consisting of 1 kb of the TS 5'-flanking region, the coding region (with or without various introns at their normal locations), and polyadenylation signals from the TS gene, the human beta-globin gene, and the bovine growth hormone gene were stably transfected into wild-type mouse 3T6 cells. Minigenes that contained introns 5 and 6, 1 and 2, or 1 alone were regulated regardless of which polyadenylation signal was included. A minigene that contained an internally deleted version of intron 1 was also regulated in response to growth stimulation. However, when all introns were omitted, there was little if any change in the level of minigene expression as cells progressed from G1 through S phase. These observations indicate that TS introns contain sequences that are necessary for normal growth-regulated expression of the mouse TS gene. These sequences appear to be associated with sequences that are important for splicing and to function in cooperation with upstream regulatory elements to bring about normal S-phase-specific expression.  相似文献   
53.
M Korb  Y Ke    L F Johnson 《Nucleic acids research》1993,21(25):5901-5908
Efficient expression of many mammalian genes depends on the presence of at least one intron. We previously showed that addition of almost any of the introns from the mouse thymidylate synthase (TS) gene to an intronless TS minigene led to a large increase in expression. However, addition of intron 4 led to a reduction in minigene expression. The goal of the present study was to determine why TS intron 4 was unable to stimulate expression. Insertion of intron 4 into an intron-dependent derivative of the ribosomal protein L32 gene did not lead to a significant increase in expression, suggesting that its inability to stimulate expression was due to sequences within the intron. Deleting most of the interior of intron 4, improving the putative branch point, removing purines from the pyrimidine stretch at the 3' end of the intron, or removing possible alternative splice acceptor or donor sites within the intron each had little effect on the level of expression. However, when the splice donor sequence of intron 4 was modified so that it was perfectly complementary to U1 snRNA, the modified intron 4 stimulated expression approximately 6-fold. When the splice donor site of TS intron 1 (a stimulatory intron) was changed to that of TS intron 4, the modified intron 1 was spliced very inefficiently and lost the ability to stimulate mRNA production. Our observations support the idea that introns can stimulate gene expression by a process that depends directly on the splicing reaction.  相似文献   
54.
55.
Grain size and filling are two key determinants of grain thousand-kernel weight (TKW) and crop yield, therefore they have undergone strong selection since cereal was domesticated. Genetic dissection of the two traits will improve yield potential in crops. A quantitative trait locus significantly associated with wheat grain TKW was detected on chromosome 7AS flanked by a simple sequence repeat marker of Wmc17 in Chinese wheat 262 mini-core collection by genome-wide association study. Combined with the bulked segregant RNA-sequencing (BSR-seq) analysis of an F2 genetic segregation population with extremely different TKW traits, a candidate trehalose-6-phosphate phosphatase gene located at 135.0 Mb (CS V1.0), designated as TaTPP-7A, was identified. This gene was specifically expressed in developing grains and strongly influenced grain filling and size. Overexpression (OE) of TaTPP-7A in wheat enhanced grain TKW and wheat yield greatly. Detailed analysis revealed that OE of TaTPP-7A significantly increased the expression levels of starch synthesis- and senescence-related genes involved in abscisic acid (ABA) and ethylene pathways. Moreover, most of the sucrose metabolism and starch regulation-related genes were potentially regulated by SnRK1. In addition, TaTPP-7A is a crucial domestication- and breeding-targeted gene and it feedback regulates sucrose lysis, flux, and utilization in the grain endosperm mainly through the T6P-SnRK1 pathway and sugar–ABA interaction. Thus, we confirmed the T6P signalling pathway as the central regulatory system for sucrose allocation and source–sink interactions in wheat grains and propose that the trehalose pathway components have great potential to increase yields in cereal crops.  相似文献   
56.
Exosomal microRNA (miRNA) exerts potential roles in non-small-cell lung cancer (NSCLC). The current study elucidated the role of miR-30b-5p shuttled by bone marrow mesenchymal stem cells (BMSCs)-derived exosomes in treating NSCLC. Bioinformatics analysis was performed with NSCLC-related miRNA microarray GSE169587 and mRNA data GSE74706 obtained for collection of the differentially expressed miRNAs and mRNAs. The relationship between miR-30b-5p and EZH2 was predicted and confirmed. Exosomes were isolated from BMSCs and identified. BMSCs-derived exosomes overexpressing miR-30b-5p were used to establish subcutaneous tumorigenesis models to study the effects of miR-30b-5p, EZH2 and PI3K/AKT signalling pathway on tumour growth. A total of 86 BMSC-exo-miRNAs were differentially expressed in NSCLC. Bioinfomatics analysis found that BMSC-exo-miR-30b-5p could regulate NSCLC progression by targeting EZH2, which was verified by in vitro cell experiments. Besides, the target genes of miR-30b-5p were enriched in PI3K/AKT signalling pathway. Animal experiments validated that BMSC-exo-miR-30b-5p promoted NSCLC cell apoptosis and prevented tumorigenesis in nude mice via EZH2/PI3K/AKT axis. Collectively, the inhibitory role of BMSC-derived exosomes-loaded miR-30b-5p in NSCLC was achieved through blocking the EZH2/PI3K/AKT axis.  相似文献   
57.
Polyethylene terephthalate (PET) hydrolase enzymes show promise for enzymatic PET degradation and green recycling of single-use PET vessels representing a major source of global pollution. Their full potential can be unlocked with enzyme engineering to render activities on recalcitrant PET substrates commensurate with cost-effective recycling at scale. Thermostability is a highly desirable property in industrial enzymes, often imparting increased robustness and significantly reducing quantities required. To date, most engineered PET hydrolases show improved thermostability over their parental enzymes. Here, we report engineered thermostable variants of Ideonella sakaiensis PET hydrolase enzyme (IsPETase) developed using two scaffolding strategies. The first employed SpyCatcher-SpyTag technology to covalently cyclize IsPETase, resulting in increased thermostability that was concomitant with reduced turnover of PET substrates compared to native IsPETase. The second approach using a GFP-nanobody fusion protein (vGFP) as a scaffold yielded a construct with a melting temperature of 80°C. This was further increased to 85°C when a thermostable PETase variant (FAST PETase) was scaffolded into vGFP, the highest reported so far for an engineered PET hydrolase derived from IsPETase. Thermostability enhancement using the vGFP scaffold did not compromise activity on PET compared to IsPETase. These contrasting results highlight potential topological and dynamic constraints imposed by scaffold choice as determinants of enzyme activity.  相似文献   
58.
Most studies comparing biodiversity between natural and human-modified landscapes focus on patterns in species occurrence or abundance, but do not consider how different habitat types meet species' breeding requirements. Organisms that use or nest in tree cavities may be especially threatened by habitat conversion due to the loss of their nesting sites. Although cavity-nesting bird diversity is highest in the tropics, little is known about how tropical birds use cavities, how agriculture affects their reproductive biology, and how effective nest boxes could be as a conservation strategy in tropical agriculture. Here, we explored how habitat conversion from tropical forests to pasture affects the abundance, nesting habitat availability, and nest success of cavity-nesting birds in Northwest Ecuador. We conducted bird surveys and measured natural cavity availability and use in forest and agriculture. We also added artificial nest boxes to forest and agriculture to see whether cavity limitation in agriculture would elicit higher use of artificial nest boxes. We found evidence of cavity limitation in agriculture—there were many more natural cavities in forest than in agriculture, as well as more avian use of nest boxes placed in agriculture as compared to forest. Our results suggest that it is important to retain remnant trees in tropical agriculture to provide critical nesting habitat for birds. In addition, adding nest boxes to tropical agricultural systems could be a good conservation strategy for certain species, including insectivores that could provide pest-control services to farmers. Abstract in Spanish is available with online material.  相似文献   
59.
动物群落是构成城市绿地生态系统的关键要素,声景作为野生动物重要的生态信息,掌握其时空变化及其影响因素,对于指导城市绿地景观设计与生物多样性保护具有重要意义。本文以Web of Science数据库的核心合集2005–2022年收录的67篇研究文献为对象,综合梳理与分析了城市绿地动物声景的时空模式及其驱动因素。城市绿地动物声景在空间上表现出环境空间梯度和植被空间结构的差异,动物声音多样性随海拔、纬度、城市化程度的降低以及植被类型和高度的增加呈现升高趋势。时间尺度呈现出昼夜、季节和年度变化差异,表现为鸟类在黎明和黄昏合唱、昆虫和两栖动物在夜间鸣叫以及季节性和年度性发声规律等。影响城市动物声景模式的因素主要包括植被、环境、人为干扰和动物自身驱动等。动物声景作为当前声景生态学研究的热点之一,面临大时空尺度演变规律研究不足、动物声景分析有限等挑战,建议未来着重开展多时空尺度变化规律研究、创新动物声景分析方法、定量解析影响因素及其响应机制、建立全球动物声景数据库等。  相似文献   
60.
Phosphorus is a major nutrient vital for plant growth and development, with a substantial amount of cellular phosphorus being used for the biosynthesis of membrane phospholipids. Here, we report that NON-SPECIFIC PHOSPHOLIPASE C4 (NPC4) in rapeseed (Brassica napus) releases phosphate from phospholipids to promote growth and seed yield, as plants with altered NPC4 levels showed significant changes in seed production under different phosphate conditions. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated knockout of BnaNPC4 led to elevated accumulation of phospholipids and decreased growth, whereas overexpression (OE) of BnaNPC4 resulted in lower phospholipid contents and increased plant growth and seed production. We demonstrate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in vitro, and plants with altered BnaNPC4 function displayed changes in their sphingolipid and glycerolipid contents in roots, with a greater change in glycerolipids than sphingolipids in leaves, particularly under phosphate deficiency conditions. In addition, BnaNPC4-OE plants led to the upregulation of genes involved in lipid metabolism, phosphate release, and phosphate transport and an increase in free inorganic phosphate in leaves. These results indicate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in rapeseed to enhance phosphate release from membrane phospholipids and promote growth and seed production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号