首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   4篇
  2023年   5篇
  2022年   8篇
  2021年   21篇
  2020年   12篇
  2019年   4篇
  2018年   11篇
  2017年   3篇
  2016年   10篇
  2015年   7篇
  2014年   6篇
  2013年   7篇
  2012年   7篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  1993年   2篇
  1982年   2篇
  1980年   1篇
排序方式: 共有112条查询结果,搜索用时 31 毫秒
11.
Lung cancer is the most commonly diagnosed cancer worldwide with a high mortality rate. In this study, the therapeutic effect of combination valproic acid and niclosamide was investigated on human lung cancer cell line. The effects of the compounds alone and combination therapy on cell viability were determined by sulforhodamine B and adenosine 5′-triphosphate viability assays. Flow cytometry was used to determine the cell death mechanism and DNA damage levels responsible for the cytotoxic effects of combination therapy. The presence of apoptosis in cells was supported by fluorescence microscopy and also by using inhibitors of the apoptotic signaling pathway. The increase in cellular reactive oxygen species (ROS) level in combination therapy was determined by H2DCFDA staining. The effect of N-acetyl-l -cysteine combination on ROS increase was investigated on cell viability. In addition, the expression levels of the proteins associated with epigenetic regulation and cell death were analyzed by Western blotting and gene expression levels were determined using real-time quantitative polymerase chain reaction.It was observed that the combination therapy showed a cytotoxic effect on the A549 lung cancer cells compared to the individual use of the inhibitors. The absence of this effect on normal lung cells revealed the presence of a selective toxic effect. When the mechanism of cytotoxicity is examined, it has been observed that combination therapy initiates the activation of tumor necrosis receptors and causes apoptosis by activated caspase. It was also observed that this extrinsic apoptotic pathway was activated on the mitochondrial pathway. In addition, ER stress and mitochondrial membrane potential loss associated with increased ROS levels induce cell death. When the data in this study were evaluated, combination therapy caused a dramatic decrease in cell viability by inducing the extrinsic apoptotic pathway in lung cancer cell line. Therefore, it was concluded that it can be used as an effective and new treatment option for lung cancer.  相似文献   
12.
  相似文献   
13.
14.
Steroidal and non-steroidal aromatase inhibitors target the suppression of estrogen biosynthesis in the treatment of breast cancer. Researchers have increasingly focused on developing non-steroidal derivatives for their potential clinical use avoiding steroidal side-effects.Non-steroidal derivatives generally have planar aromatic structures attached to the azole ring system. One part of this ring system comprises functional groups that inhibit aromatization through the coordination of the haem group of the aromatase enzyme. Replacement of the triazole ring system and development of aromatic/cyclic structures of the side chain can increase selectivity over aromatase enzyme inhibition.In this study, 4-(aryl/heteroaryl)-2-(pyrimidin-2-yl)thiazole derivatives were synthesized and physical analyses and structural determination studies were performed. The IC50 values were determined by a fluorescence-based aromatase inhibition assay and compound 1 (4-(2-hydroxyphenyl)-2-(pyrimidine-2-yl)thiazole) were found potent inhibitor of enzyme (IC50:0.42?nM). Then, their antiproliferative activity over MCF-7 and HEK-293 cell lines was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Compounds 1, 7, 8, 13, 15, 18, 21 were active against MCF-7 breast cancer cells. Lastly, a series of docking experiments were undertaken to analyze the crystal structure of human placental aromatase and identify the possible interactions between the most active structure and the active site.  相似文献   
15.
Polydatin (PLD), the 3-O-β-glucopyranoside of the well-known stilbenoid compound resveratrol, is a major compound of Fallopia japonica (Houtt.) R. Decr. (Japanese knotweed), which is widely used in traditional Chinese medicine to treat infection, inflammatory diseases and circulatory problems. It has shown a wide range of biological activities including anti-inflammatory, anti-oxidant, anti-cancer, neuroprotective, hepatoprotective, nephroprotective and immunostimulatory effects. Although resveratrol has similar beneficial effects, its low bioavailability has remained a problem. Glycosylation increases solubility of resveratrol in an aqueous environment, thus improving its bioavailability. This has led to a growing interest in PLD. Promising results obtained from bioactivity studies have boosted an intense research on this compound. The aim of this review is to give a comprehensive overview of the botanical sources, pharmacology, biosynthesis, biotechnological production, and bioactivities of PLD, and to discuss clinical studies on this compound.  相似文献   
16.
In this study, we aimed to research the effects of class‐I HDACs and glucose on differentiation of pancreatic islet derived mesenchymal stem cells (PI‐MSCs) to beta cells. Beta cell differentiation determined by flow cytometric analysis and gene expression levels of PDX1, PAX4, PAX6, NKX6.1, NGN3, INS2, and GLUT2. As a result the valproic acid, is an inhibitor of class‐I HDACs, caused the highest beta cell differentiation in PI‐MSCs. However, the cells in this group were at early stages of differentiation. Glucose co‐administration to this group carried the differentiation to higher levels, but these newly formed beta cells were not functional. Moreover, reduction in the levels of pluripotency factors that Oct3/4, c‐Myc, and Nanog were parallel to beta cell differentiation. Also, the levels of HDAC1 and acetylated H3/H4 were increased and methylated H3 was decreased by VPA treatment. In addition, we have detected over expression in genes of miR‐18a‐5p, miR‐19b‐5p, miR‐30d‐3p, miR‐124, miR‐146a‐5p, miR‐184, miR‐335, and miR‐433‐5p in parallel to beta cell differentiation. As the conclusion, this study is important for understanding the epigenetic mechanism that controls the beta cell differentation and it suggests new molecules that can be used for diagnosis, and treatment of diabetes. J. Cell. Biochem. 119: 455–467, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   
17.
The objective of the present study was to evaluate the effects of propolis, pollen, and caffeic acid phenethyl ester (CAPE) on tyrosine hydroxylase (TH) activity and total RNA levels of Nω-nitro-L-arginine methyl ester (L-NAME) inhibition of nitric oxide synthase in the heart, adrenal medulla, and hypothalamus of hypertensive male Sprague dawley rats. The TH activity in the adrenal medulla, heart, and hypothalamus of the rats was significantly increased in the L-NAME group vs. control (p < 0.05). Treatment with L-NAME led to a significant increase in blood pressure (BP) in the L-NAME group compared to control (p < 0.05). These data suggest that propolis, pollen, and CAPE may mediate diminished TH activity in the heart, adrenal medulla, and hypothalamus in hypertensive rats. The decreased TH activity may be due to the modulation and synthesis of catecholamines and BP effects. In addition, the binding mechanism of CAPE within the catalytic domain of TH was investigated by means of molecular modeling approaches. These data suggest that the amino acid residues, Glu429 and Ser354 of TH may play a pivotal role in the stabilization of CAPE within the active site as evaluated by molecular dynamics (MD) simulations. Gibbs binding free energy (ΔGbinding) of CAPE in complex with TH was also determined by post-processing MD analysis approaches (i.e. Poisson-Boltzmann Surface Area (MM-PBSA) method).  相似文献   
18.
The current COVID-19 outbreak has had a profound influence on public health and daily life. Despite all restrictions and vaccination programs, COVID-19 still can lead to fatality due to a lack of COVID-19-specific treatments. A number of studies have demonstrated the feasibility to develop therapeutics by targeting underlying components of the viral proteome. Here we reviewed recently developed and validated small molecule inhibitors of SARS-CoV-2’s nonstructural proteins. We described the validation level of identified compounds specific for SARS-CoV-2 in the presence of in vitro and in vivo supporting data. The mechanisms of pharmacological activity, as well as approaches for developing improved SARS-CoV-2 NSP inhibitors have been emphasized.  相似文献   
19.
20.
This study investigated the distribution and accumulation of strontium (Sr) in the shoots and roots of Euphorbia macroclada (EU), Verbascum cheiranthifolium (VR), and Astragalus gummifer (AS), with respect to their potential use in phytoremediation. Plant samples and their associated soils were collected from the arid and semi-arid Keban mining area and were analyzed inductively by ICP-MS for Sr. Mean Sr values in the shoots, roots and soil were, respectively, 453, 243 and 398 mg kg?1 for E. macroclada; 149, 106 and 398 mg kg?1 for V. cheiranthifolium; and 278, 223 and 469 mg kg?1 for A. gummifer. The enrichment factors for root (ECR) and shoot (ECS) of these plants were lower than 1 or close to 1, except for the shoot of E. macroclada. The mean translocation factors (TLF) of these plants were higher than 1 and 2.08 for E. macroclada, 1.47 for V. cheiranthifolium, 1.18 for A. gummifer. It thus appeared that the shoots of these plants can be an efficient bioaccumulator plant for Sr and it can be used in cleaning or rehabilitating of the contaminated soil and areas by Sr because of their high translocation factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号