首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   34篇
  316篇
  2023年   2篇
  2022年   5篇
  2021年   7篇
  2020年   8篇
  2019年   1篇
  2018年   6篇
  2017年   8篇
  2016年   18篇
  2015年   37篇
  2014年   27篇
  2013年   34篇
  2012年   8篇
  2011年   6篇
  2010年   18篇
  2009年   25篇
  2008年   7篇
  2007年   7篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   6篇
  2001年   1篇
  2000年   6篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
  1971年   2篇
  1967年   1篇
  1958年   1篇
排序方式: 共有316条查询结果,搜索用时 15 毫秒
61.
IgA nephropathy (IgAN) is the most common primary glomerulonephritis in the world. Aberrantly glycosylated IgA1, with galactose (Gal)-deficient hinge region (HR) O-glycans, plays a pivotal role in the pathogenesis of the disease. It is not known whether the glycosylation defect occurs randomly or preferentially at specific sites. We have described the utility of activated ion-electron capture dissociation (AI-ECD) mass spectrometric analysis of IgA1 O-glycosylation. However, locating and characterizing the entire range of O-glycan attachment sites are analytically challenging due to the clustered serine and threonine residues in the HR of IgA1 heavy chain. To address this problem, we analyzed all glycoforms of the HR glycopeptides of a Gal-deficient IgA1 myeloma protein, mimicking the aberrant IgA1 in patients with IgAN, by use of a combination of IgA-specific proteases + trypsin and AI-ECD Fourier transform ion cyclotron resonance (FT-ICR) tandem mass spectrometry (MS/MS). The IgA-specific proteases provided a variety of IgA1 HR fragments that allowed unambiguous localization of all O-glycosylation sites in the six most abundant glycoforms, including the sites deficient in Gal. Additionally, this protocol was adapted for on-line liquid chromatography (LC)-AI-ECD MS/MS and LC-electron transfer dissociation MS/MS analysis. Our results thus represent a new clinically relevant approach that requires ECD/electron transfer dissociation-type fragmentation to define the molecular events leading to pathogenesis of a chronic kidney disease. Furthermore, this work offers generally applicable principles for the analysis of clustered sites of O-glycosylation.Glycosylation is one of the most common post-translational modifications of proteins. It is estimated that over half of mammalian proteins are glycosylated. Patients with several autoimmune disorders, chronic inflammatory diseases, and some infectious diseases exhibit abnormal glycosylation of serum immunoglobulins and other glycoproteins (15). The biological functions of these modifications in health and disease have become a significant area of interest in biomedical research (6). A subset of these glycoproteins has clustered sites of O-glycosylation with serine- and threonine-rich stretches within the amino acid sequence. Mucins, such as membrane-associated MUC1, are perhaps the best known family of proteins that are heavily O-glycosylated. Their altered expression and aberrant glycosylation have made them potential targets as biomarkers for early detection of cancer (7). Immunoglobulin A1 (IgA1)1 contains both O- and N-glycans (Fig. 1). Aberrant O-glycosylation of IgA1 is involved in the pathogenesis of IgA nephropathy (IgAN) and the closely related Henoch-Schönlein purpura nephritis (1, 8). Interestingly, the aberrantly glycosylated molecules, IgA1 in IgAN and MUC1 in cancer, are recognized by the immune system as neoepitopes as evidenced by formation of specific antibodies (911). Mucin-like bacterial surface proteins exhibit similar properties: the molecules have clustered bacterial O-glycans that mediate cellular adhesion, and blocking antibodies target these glycan-containing epitopes (12).Open in a separate windowFig. 1.IgA1 structural elements. IgA1 has N-linked glycans (filled circles) and O-linked glycans (open circles). The O-glycosylated sites are in the HR between the first and second constant region domains of the heavy chains. The HR is a Pro-rich segment with nine possible sites of O-glycan attachment. Underlined serine and threonine residues are usually glycosylated (31). Arrows show cleavage sites of trypsin and IgA-specific proteases.An O-glycosylated protein from a single source contains a population of variably O-glycosylated isoforms that show a distinct distribution of microheterogeneity of the O-glycan chains in terms of number, sites of attachment, and composition. Characterizing these clustered sites and understanding how the distributions change under different biological conditions or disease states are an analytical challenge. Enzymatic or chemical release of O-glycans is not selective. The heterogeneity, composition, and quantitative aspects of different O-glycan chains can be assessed and quantified by gas chromatographic and/or mass spectrometric techniques. However, the site-specific information and context of location and composition of adjacent chains are lost. Carbohydrate-specific lectin analysis of O-glycoproteins can provide information on glycan composition and comparative differences between samples, such as those from healthy controls and patients with various disease states. We have successfully demonstrated this in the analysis of IgA1 O-glycans from patients with IgAN versus healthy controls and disease controls (1315). This included proximal assessment of sites with galactose (Gal)-deficient O-glycans after digests with IgA-specific proteases (8). Several studies have demonstrated the value of mass spectrometry (MS) in identifying Gal-deficient IgA1 in patients with IgAN (1621), including our work that demonstrated the first direct localization of native sites of O-glycan chains in the hinge region (HR) of IgA1 by use of electron capture dissociation (ECD) (20, 22). ECD and the more recently developed electron transfer dissociation (ETD) have been used to identify sites of O-glycosylation on a variety of proteins (2326). This includes the analysis of sites of O-glycosylation by on-line LC-ECD/ETD MS/MS methods (23, 26, 27).IgAN is the most common primary glomerulonephritis worldwide (28) with about 20–40% of patients developing end stage renal failure. It is characterized by mesangial deposits of IgA1-containing immune complexes (28). The distinctive O-glycan chains of IgA1 molecules play a pivotal role in the pathogenesis of IgAN (1, 10, 1416, 29, 30). IgA1 contains an HR between the first and second heavy chain constant region domains with a high content of Ser, Thr, and Pro. This segment usually has three to five O-glycan chains per HR (31) (see Fig. 1). Aberrantly glycosylated IgA1, deficient in Gal in some of the O-glycans in the HR, in serum is rare in healthy individuals but is present at elevated levels in IgAN patients (13, 15). This distinctive IgA1 is in circulating immune complexes (8, 10, 15) and in the glomerular deposits of IgAN patients (16, 29). The absence of Gal apparently leads to the exposure of neoepitopes, including terminal and sialylated N-acetylgalactosamine (GalNAc) residues (9, 10). These epitopes are recognized by naturally occurring anti-glycan IgG or IgA1 antibodies and, consequently, circulating immune complexes are formed (9, 10, 15) that can deposit in the glomerular mesangia. To identify the pathogenic forms of IgA1, a thorough analysis of O-glycan microheterogeneity, including identification of the attachment sites, will be required.In this work, we demonstrate the complete analysis of O-glycoform microheterogeneity and site localization of the glycoforms in a naturally Gal-deficient IgA1 (Ale) myeloma protein that mimics the nephritogenic IgA1 in patients with IgAN (8, 9). Reversed phase (RP) LC FT-ICR MS successfully identified 10 distinct IgA1 HR fragments representing >99% of total IgA1. AI-ECD of the six most abundant IgA1 HR glycoforms (>95% of total IgA1) was accomplished with three distinct IgA-specific protease + trypsin digestions, identifying sites of Gal deficiency across four distinct IgA1 O-glycoforms. Based on the success of the ECD fragmentation of these IgA1 HR fragments, we adapted the analysis for on-line LC-MS/MS methods for both ECD and ETD. The variety of IgA1 HR proteolytic fragments provides a practical set of guidelines for the ECD/ETD analysis of clustered sites of O-glycosylation on this and other proteins. These results also provide insight into the order of attachment of the O-glycans in the IgA1 HR.  相似文献   
62.
63.
64.
The human placenta is a complex organ whose proper function is crucial for the development of the fetus. The placenta contains within its structure elements of the maternal and fetal circulatory systems. The interface with maternal blood is the lining of the placenta, that is a unique compartment known as the syncytiotrophoblast. This large syncytial structure is a single cell layer in thickness, and the apical plasma membrane of the syncytiotrophoblast interacts directly with maternal blood. Relatively little is known about the proteins that reside in this unique plasma membrane or how they may change in various placental diseases. Our goal was to develop methods for isolating highly enriched preparations of this apical plasma membrane compatible with high-quality proteomics analysis and herein describe the properties of these isolated membranes.  相似文献   
65.
We conducted studies on mosquitoes and West Nile virus (WNV) along a riparian corridor following the South Platte River and Big Thompson River in northeastern Colorado and extending from an elevation of 1,215 m in the prairie landscape of the eastern Colorado plains to 1,840 m in low montane areas at the eastern edge of the Rocky Mountains in the central part of the state. Mosquito collection during June‐September 2007 in 20 sites along this riparian corridor yielded a total of 199,833 identifiable mosquitoes of 17 species. The most commonly collected mosquitoes were, in descending order: Aedes vexans, Culex tarsalis, Ae. dorsalis, Ae. trivittatus, Ae. melanimon, Cx. pipiens, and Culiseta inornata. Species richness was higher in the plains than in foothills‐montane areas, and abundances of several individual species, including the WNV vectors Cx. tarsalis and Cx. pipiens and the nuisance‐biter and potential secondary WNV vector Ae. vexans, decreased dramatically from the plains (1,215‐1,487 m) to foothills‐montane areas (1,524‐1,840 m). Ae. vexans and Cx. tarsalis had a striking pattern of uniformly high abundances between 1,200‐1,450 m followed by a gradual decrease in abundance above 1,450 m to reach very low numbers above 1,550 m. Culex species were commonly infected with WNV in the plains portion of the riparian corridor in 2007, with 14 of 16 sites yielding WNV‐infected Cx. tarsalis and infection rates for Cx. tarsalis females exceeding 2.0 per 1,000 individuals in ten of the sites. The Vector Index for abundance of WNV‐infected Cx. tarsalis females during June‐September exceeded 0.5 in six plains sites along the South Platte River but was uniformly low (0–0.1) in plains, foothills and montane sites above 1,500 m along the Big Thompson River. A population genetic analysis of Cx. tarsalis revealed that all collections from the ≈190 km riparian transect in northeastern Colorado were genetically uniform but that these collections were genetically distinct from collections from Delta County on the western slope of the Continental Divide. This suggests that major waterways in the Great Plains serve as important dispersal corridors for Cx. tarsalis but that the Continental Divide is a formidable barrier to this WNV vector.  相似文献   
66.
Low intensity resistance exercise (RE) with blood flow restriction (BFR) has gained attention in the literature due to the beneficial effects on functional and morphological variables, similar to those observed during traditional RE without BFR, while the effects of BFR on post-exercise hypotension remain unclear. The aim of the present study was to compare the blood pressure (BP) response of trained normotensive individuals to RE with and without BFR. In this cross-over randomized trial, eight male subjects (23.8 ± 4 years, 74 ± 3 kg, 174 ± 4 cm) completed two exercise protocols: traditional RE (3 x 10 repetitions at 70% one-repetition maximum [1-RM]) and low intensity RE (3 x 15 repetitions at 20% 1-RM) with BFR. Blood pressure measurements were performed after 15 min of seated rest (0), immediately after and 10 min, 20 min, 30 min, 40 min, 50 min and 60 min after the experimental sessions. Similar hypotensive effects for systolic BP (SBP) were observed for both protocols (P < 0.05) after exercise, with no differences between groups (P > 0.05) and no statistically significant difference for diastolic BP (P > 0.05). These results suggest that in normotensive trained individuals, both traditional RE and RE with BFR induce hypotension for SBP, which is important to prevent cardiovascular disturbances.  相似文献   
67.
68.
Two Algal Turf Scrubber (ATS) units were deployed on the Great Wicomico River (GWR) for 22 months to examine the role of substrate in increasing algal productivity and nutrient removal. The yearly mean productivity of flat ATS screens was 15.4 g · m?2 · d?1. This was elevated to 39.6 g · m?2 · d?1 with a three‐dimensional (3‐D) screen, and to 47.7 g · m?2 · d?1 by avoiding high summer harvest temperatures. These methods enhanced nutrient removal (N, P) in algal biomass by 3.5 times. Eighty‐six algal taxa (Ochrophyta [diatoms], Chlorophyta [green algae], and Cyan‐obacteria [blue–green algae]) self‐seeded from the GWR and demonstrated yearly cycling. Silica (SiO2) content of the algal biomass ranged from 30% to 50% of total biomass; phosphorus, nitrogen, and carbon content of the total algal biomass ranged from 0.15% to 0.21%, 2.13% to 2.89%, and 20.0% to 25.7%, respectively. Carbohydrate content (at 10%–25% of AFDM) was dominated by glucose. Lipids (fatty acid methyl ester; FAMEs) ranged widely from 0.5% to 9% AFDM, with Omega‐3 fatty acids a consistent component. Mathematical modeling of algal produ‐ctivity as a function of temperature, light, and substrate showed a proportionality of 4:3:3, resp‐ectively. Under landscape ATS operation, substrate manipulation provides a considerable opportunity to increase ATS productivity, water quality amelioration, and biomass coproduction for fertilizers, fermentation energy, and omega‐3 products. Based on the 3‐D prod‐uctivity and algal chemical composition demonstrated, ATS systems used for nonpoint source water treat‐ment can produce ethanol (butanol) at 5.8× per unit area of corn, and biodiesel at 12.0× per unit area of soy beans (agricultural production US).  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号