首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2681篇
  免费   336篇
  2016年   26篇
  2015年   53篇
  2014年   58篇
  2013年   80篇
  2012年   116篇
  2011年   107篇
  2010年   73篇
  2009年   62篇
  2008年   94篇
  2007年   103篇
  2006年   96篇
  2005年   100篇
  2004年   101篇
  2003年   73篇
  2002年   77篇
  2001年   65篇
  2000年   70篇
  1999年   57篇
  1998年   32篇
  1997年   30篇
  1996年   25篇
  1995年   31篇
  1994年   29篇
  1993年   25篇
  1992年   51篇
  1991年   65篇
  1990年   71篇
  1989年   50篇
  1988年   57篇
  1987年   67篇
  1986年   58篇
  1985年   55篇
  1984年   55篇
  1983年   45篇
  1982年   23篇
  1981年   32篇
  1980年   38篇
  1979年   58篇
  1978年   38篇
  1977年   34篇
  1976年   41篇
  1975年   38篇
  1974年   36篇
  1973年   34篇
  1972年   38篇
  1971年   47篇
  1970年   28篇
  1967年   27篇
  1965年   28篇
  1960年   21篇
排序方式: 共有3017条查询结果,搜索用时 15 毫秒
991.
In adult canines following major lung resection, the remaining lobes expand asymmetrically, associated with alveolar tissue regrowth, remodeling, and progressive functional compensation over many months. To permit noninvasive longitudinal assessment of regional growth and function, we performed serial high-resolution computed tomography (HRCT) on six male dogs (~9 mo old, 25.0 ± 4.5 kg, ±SD) at 15 and 30 cmH(2)O transpulmonary pressure (Ptp) before resection (PRE) and 3 and 15 mo postresection (POST3 and POST15, respectively) of 65-70% of lung units. At POST3, lobar air volume increased 83-148% and tissue (including microvascular blood) volume 120-234% above PRE values without further changes at POST15. Lobar-specific compliance (Cs) increased 52-137% from PRE to POST3 and 28-79% from POST3 to POST15. Inflation-related parenchyma strain and shear were estimated by detailed registration of corresponding anatomical features at each Ptp. Within each lobe, regional displacement was most pronounced at the caudal region, whereas strain was pronounced in the periphery. Regional three-dimensional strain magnitudes increased heterogeneously from PRE to POST3, with further medial-lateral increases from POST3 to POST15. Lobar principal strains (PSs) were unchanged or modestly elevated postresection; changes in lobar maximum PS correlated inversely with changes in lobar air and tissue volumes. Lobar shear distortion increased in coronal and transverse planes at POST3 without further changes thereafter. These results establish a novel use of functional HRCT to map heterogeneous regional deformation during compensatory lung growth and illustrate a stimulus-response feedback loop whereby postresection mechanical stress initiates differential lobar regrowth and sustained remodeling, which in turn, relieves parenchyma stress and strain, resulting in progressive increases in lobar Cs and a delayed increase in whole lung Cs.  相似文献   
992.
In adult dogs following right pneumonectomy (PNX) and receiving all-trans-retinoic acid (RA) supplementation for 4 mo, we found modestly enhanced alveolar-capillary growth in the remaining lung without enhanced resting lung function (J Appl Physiol 96: 1080-1089 and 96: 1090-1096, 2004). Since alveolar remodeling progresses beyond this period and the lipid-soluble RA continues to be released from tissue stores, we hypothesized that RA supplementation may exert additional long-term effects. To examine this issue, adult male litter-matched foxhounds underwent right PNX followed by RA supplementation (2 mg/kg po 4 days/wk, n = 6) or placebo (n = 4) for 4 mo. Cardiopulmonary function was measured at rest and during exercise at 4 and 20 mo post-PNX. The remaining lung was fixed under a constant airway pressure for morphometric analysis. Comparing RA treatment to placebo controls, there were no differences in aerobic capacity, cardiopulmonary function, or lung volume at rest or exercise. Alveolar-capillary basal lamina thickness and mean harmonic thickness of air-blood diffusion barrier were 23-29% higher. The prevalence of double-capillary profiles remained 82% higher. Absolute volumes of septal interstitium, collagen fibers, cells, and matrix were 32% higher; the relative volumes of other septal components and alveolar-capillary surface areas expressed as ratios to control values were up to 24% higher. Thus RA supplementation following right PNX modestly and persistently enhanced long-term alveolar-capillary structural dimensions, especially the deposition of interstitial and connective tissue elements, in such a way that caused a net increase in barrier resistance to diffusion without improving lung mechanics or gas exchange.  相似文献   
993.
994.
995.
As a result of further SAR studies on a piperidinyl piperidine scaffold, we report the discovery of compound 44, a potent, orally bioavailable CCR2 antagonist. While having some in vitro hERG activity, this molecule was clean in an in vivo model of QT prolongation. In addition, it showed excellent efficacy when dosed orally in a transgenic murine model of acute inflammation.  相似文献   
996.
Sphingolipids (SLs) act as signaling molecules and as structural components in both neuronal cells and myelin. We now characterize the biochemical, histological, and behavioral abnormalities in the brain of a mouse lacking very long acyl (C22-C24) chain SLs. This mouse, which is defective in the ability to synthesize C22-C24-SLs due to ablation of ceramide synthase 2, has reduced levels of galactosylceramide (GalCer), a major component of myelin, and in particular reduced levels of non-hydroxy-C22-C24-GalCer and 2-hydroxy-C22-C24- GalCer. Noteworthy brain lesions develop with a time course consistent with a vital role for C22-C24-GalCer in myelin stability. Myelin degeneration and detachment was observed as was abnormal motor behavior originating from a subcortical region. Additional abnormalities included bilateral and symmetrical vacuolization and gliosis in specific brain areas, which corresponded to some extent to the pattern of ceramide synthase 2 expression, with astrogliosis considerably more pronounced than microglial activation. Unexpectedly, unidentified storage materials were detected in lysosomes of astrocytes, reminiscent of the accumulation that occurs in lysosomal storage disorders. Together, our data demonstrate a key role in the brain for SLs containing very long acyl chains and in particular GalCer with a reduction in their levels leading to distinctive morphological abnormalities in defined brain regions.  相似文献   
997.
γ-band oscillations are thought to play a crucial role in information processing in cortical networks. In addition to oscillatory activity between 30 and 60 Hz, current evidence from electro- and magnetoencephalography (EEG/MEG) and local-field potentials (LFPs) has consistently shown oscillations >60 Hz (high γ-band) whose function and generating mechanisms are unclear. In the present paper, we summarize data that highlights the importance of high γ-band activity for cortical computations through establishing correlations between the modulation of oscillations in the 60-200 Hz frequency and specific cognitive functions. Moreover, we will suggest that high γ-band activity is impaired in neuropsychiatric disorders, such as schizophrenia and epilepsy. In the final part of the paper, we will review physiological mechanisms underlying the generation of high γ-band oscillations and discuss the functional implications of low vs. high γ-band activity patterns in cortical networks.  相似文献   
998.
Glucose is catabolized in yeast via two fundamental routes, glycolysis and the oxidative pentose phosphate pathway, which produces NADPH and the essential nucleotide component ribose-5-phosphate. Here, we describe riboneogenesis, a thermodynamically driven pathway that converts glycolytic intermediates into ribose-5-phosphate without production of NADPH. Riboneogenesis begins with synthesis, by the combined action of transketolase and aldolase, of the seven-carbon bisphosphorylated sugar sedoheptulose-1,7-bisphosphate. In the pathway's committed step, sedoheptulose bisphosphate is hydrolyzed to sedoheptulose-7-phosphate by the enzyme sedoheptulose-1,7-bisphosphatase (SHB17), whose activity we identified based on metabolomic analysis of the corresponding knockout strain. The crystal structure of Shb17 in complex with sedoheptulose-1,7-bisphosphate reveals that the substrate binds in the closed furan form in the active site. Sedoheptulose-7-phosphate is ultimately converted by known enzymes of the nonoxidative pentose phosphate pathway to ribose-5-phosphate. Flux through SHB17 increases when ribose demand is high relative to demand for NADPH, including during ribosome biogenesis in metabolically synchronized yeast cells.  相似文献   
999.
The genus of Marinobacter is one of the most ubiquitous in the global oceans and assumed to significantly impact various biogeochemical cycles. The genome structure and content of Marinobacter aquaeolei VT8 was analyzed and compared with those from other organisms with diverse adaptive strategies. Here, we report the many "opportunitrophic" genetic characteristics and strategies that M. aquaeolei has adopted to promote survival under various environmental conditions. Genome analysis revealed its metabolic potential to utilize oxygen and nitrate as terminal electron acceptors, iron as an electron donor, and urea, phosphonate, and various hydrocarbons as alternative N, P, and C sources, respectively. Miscellaneous sensory and defense mechanisms, apparently acquired via horizontal gene transfer, are involved in the perception of environmental fluctuations and antibiotic, phage, toxin, and heavy metal resistance, enabling survival under adverse conditions, such as oil-polluted water. Multiple putative integrases, transposases, and plasmids appear to have introduced additional metabolic potential, such as phosphonate degradation. The genomic potential of M. aquaeolei and its similarity to other opportunitrophs are consistent with its cosmopolitan occurrence in diverse environments and highly variable lifestyles.  相似文献   
1000.
Plants possess remarkable ability to adapt to adverse environmental conditions. The adaptation process involves the removal of many molecules from organelles, especially membranes, and replacing them with new ones. The process is mediated by an intracellular vesicle-trafficking system regulated by phosphatidylinositol (PtdIns) kinases and phosphatases. Although PtdIns comprise a fraction of membrane lipids, they function as major regulators of stress signaling. We analyzed the role of PtdIns 5-phosphatases (5PTases) in plant salt tolerance. The Arabidopsis (Arabidopsis thaliana) genome contains 15 At5PTases. We analyzed salt sensitivity in nine At5ptase mutants and identified one (At5ptase7) that showed increased sensitivity, which was improved by overexpression. At5ptase7 mutants demonstrated reduced production of reactive oxygen species (ROS). Supplementation of mutants with exogenous PtdIns dephosphorylated at the D5' position restored ROS production, while PtdIns(4,5)P(2), PtdIns(3,5)P(2), or PtdIns(3,4,5)P(3) were ineffective. Compromised salt tolerance was also observed in mutant NADPH Oxidase, in agreement with the low ROS production and salt sensitivity of PtdIns 3-kinase mutants and with the inhibition of NADPH oxidase activity in wild-type plants. Localization of green fluorescent protein-labeled At5PTase7 occurred in the plasma membrane and nucleus, places that coincided with ROS production. Analysis of salt-responsive gene expression showed that mutants failed to induce the RD29A and RD22 genes, which contain several ROS-dependent elements in their promoters. Inhibition of ROS production by diphenylene iodonium suppressed gene induction. In summary, our results show a nonredundant function of At5PTase7 in salt stress response by regulating ROS production and gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号