首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   67篇
  国内免费   1篇
  2021年   10篇
  2020年   5篇
  2019年   6篇
  2018年   11篇
  2017年   5篇
  2016年   14篇
  2015年   25篇
  2014年   26篇
  2013年   36篇
  2012年   37篇
  2011年   33篇
  2010年   13篇
  2009年   21篇
  2008年   20篇
  2007年   26篇
  2006年   24篇
  2005年   12篇
  2004年   25篇
  2003年   30篇
  2002年   20篇
  2001年   11篇
  2000年   14篇
  1999年   18篇
  1998年   5篇
  1997年   6篇
  1996年   8篇
  1995年   5篇
  1994年   8篇
  1993年   8篇
  1992年   12篇
  1991年   7篇
  1990年   7篇
  1989年   6篇
  1988年   6篇
  1987年   12篇
  1986年   5篇
  1985年   11篇
  1984年   7篇
  1983年   10篇
  1982年   5篇
  1981年   9篇
  1980年   10篇
  1979年   5篇
  1977年   5篇
  1976年   5篇
  1975年   4篇
  1974年   6篇
  1973年   5篇
  1968年   5篇
  1961年   3篇
排序方式: 共有648条查询结果,搜索用时 929 毫秒
71.
72.
73.
Rapid cycle breeding in apple is a new approach for the rapid introgression of agronomically relevant traits (e.g. disease resistances) from wild apple species into domestic apple cultivars (Malus × domestica Borkh.). This technique drastically shortens the long‐lasting juvenile phase of apple. The utilization of early‐flowering apple lines overexpressing the BpMADS4 gene of the European silver birch (Betula pendula Roth.) in hybridization resulted in one breeding cycle per year. Aiming for the selection of non‐transgenic null segregants at the end of the breeding process, the flower‐inducing transgene and the gene of interest (e.g. resistance gene) that will be introgressed by hybridization need to be located on different chromosomes. To improve the flexibility of the existing approach in apple, this study was focused on the development and characterization of eleven additional BpMADS4 overexpressing lines of four different apple cultivars. In nine lines, the flowering gene was mapped to different linkage groups. The differences in introgressed T‐DNA sequences and plant genome deletions post‐transformation highlighted the unique molecular character of each line. However, transgenic lines demonstrated no significant differences in flower organ development and pollen functionality compared with non‐transgenic plants. Hybridization studies using pollen from the fire blight‐resistant wild species accession Malus fusca MAL0045 and the apple scab‐resistant cultivar ‘Regia’ indicated that BpMADS4 introgression had no significant effect on the breeding value of each transgenic line.  相似文献   
74.
Standard coagulation tests have a low specificity and sensitivity for diagnosing disseminated intravascular coagulation. The aim of this study was to determine whether whole blood thromboelastometry (TEM) detects lipopolysaccharide (LPS)-induced changes in coagulation. Blood samples from 10 pigs were drawn at baseline, before and at the end of LPS infusion and 2, 3, 4 and 5 h after the start of endotoxinemia. Simultaneous to TEM, standard coagulation tests and extended coagulation analysis including tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 1 (PAI-1) were performed. Endotoxinemia resulted in a significant acceleration of the nonactivated TEM (NATEM) clotting time 2 h after the end of LPS infusion; in contrast, the changes in international normalized ratio and activated partial thromboplastin time suggested delayed initiation of coagulation. NATEM maximum clot firmness (MCF) and fibrin-based thromboelastometry test (FIBTEM)-MCF decreased significantly from baseline until the last time point (from 64.6 ± 7.8 and 35.1 ± 12.8 mm to 52.8 ± 4.6 and 21.4 ± 11.8 mm, respectively; P = 0.01 for both parameters). A sharp, transient increase of t-PA had no effect on maximum lysis in the NATEM test. PAI-1 increased significantly 3 h after the start of LPS infusion, paralleled by a decrease in maximum lysis. In conclusion, TEM was superior to standard coagulation tests in reflecting initial activation of coagulation during endotoxinemia. TEM further suggested consumption of coagulation substrate; at the same time, inhibition of plasminogen activation was accompanied by improved clot stability. Further investigations are necessary to establish the clinical relevance of these findings.  相似文献   
75.
76.
While inward remodeling of small arteries in response to low blood flow, hypertension, and chronic vasoconstriction depends on type 2 transglutaminase (TG2), the mechanisms of action have remained unresolved. We studied the regulation of TG2 activity, its (sub) cellular localization, substrates, and its specific mode of action during small artery inward remodeling. We found that inward remodeling of isolated mouse mesenteric arteries by exogenous TG2 required the presence of a reducing agent. The effect of TG2 depended on its cross-linking activity, as indicated by the lack of effect of mutant TG2. The cell-permeable reducing agent DTT, but not the cell-impermeable reducing agent TCEP, induced translocation of endogenous TG2 and high membrane-bound transglutaminase activity. This coincided with inward remodeling, characterized by a stiffening of the artery. The remodeling could be inhibited by a TG2 inhibitor and by the nitric oxide donor, SNAP. Using a pull-down assay and mass spectrometry, 21 proteins were identified as TG2 cross-linking substrates, including fibronectin, collagen and nidogen. Inward remodeling induced by low blood flow was associated with the upregulation of several anti-oxidant proteins, notably glutathione-S-transferase, and selenoprotein P. In conclusion, these results show that a reduced state induces smooth muscle membrane-bound TG2 activity. Inward remodeling results from the cross-linking of vicinal matrix proteins, causing a stiffening of the arterial wall.  相似文献   
77.
This article documents the addition of 111 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Acipenser oxyrinchus desotoi, Anopheles nuneztovari sensu lato, Asellus aquaticus, Calopteryx splendens, Calopteryx virgo, Centaurea aspera, Centaurea seridis, Chilina dombeyana, Proctoeces cf. lintoni and Pyrenophora teres f. teres.  相似文献   
78.
79.
80.
The Symbiotic Anthozoan: A Physiological Chimera between Alga and Animal   总被引:2,自引:0,他引:2  
The symbiotic life style involves mutual ecological, physiological,structural, and molecular adaptations between the partners.In the symbiotic association between anthozoans and photosyntheticdinoflagellates (Symbiodinium spp., also called zooxanthellae),the presence of the endosymbiont in the animal cells has constrainedthe host in several ways. It adopts behaviors that optimizephotosynthesis of the zooxanthellae. The animal partner hashad to evolve the ability to absorb and concentrate dissolvedinorganic carbon from seawater in order to supply the symbiont'sphotosynthesis. Exposing itself to sunlight to illuminate itssymbionts sufficiently also subjects the host to damaging solarultraviolet radiation. Protection against this is provided bybiochemical sunscreens, including mycosporine-like amino acids,themselves produced by the symbiont and translocated to thehost. Moreover, to protect itself against oxygen produced duringalgal photosynthesis, the cnidarian host has developed certainantioxidant defenses that are unique among animals. Finally,living in nutrient-poor waters, the animal partner has developedseveral mechanisms for nitrogen assimilation and conservationsuch as the ability to absorb inorganic nitrogen, highly unusualfor a metazoan. These facts suggest a parallel evolution ofsymbiotic cnidarians and plants, in which the animal host hasadopted characteristics usually associated with phototrophicorganisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号