首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   67篇
  国内免费   1篇
  2021年   10篇
  2020年   5篇
  2019年   6篇
  2018年   11篇
  2017年   5篇
  2016年   14篇
  2015年   25篇
  2014年   26篇
  2013年   36篇
  2012年   37篇
  2011年   33篇
  2010年   13篇
  2009年   21篇
  2008年   20篇
  2007年   26篇
  2006年   24篇
  2005年   12篇
  2004年   25篇
  2003年   30篇
  2002年   20篇
  2001年   11篇
  2000年   14篇
  1999年   18篇
  1998年   5篇
  1997年   6篇
  1996年   8篇
  1995年   5篇
  1994年   8篇
  1993年   8篇
  1992年   12篇
  1991年   7篇
  1990年   7篇
  1989年   6篇
  1988年   6篇
  1987年   12篇
  1986年   5篇
  1985年   11篇
  1984年   7篇
  1983年   10篇
  1982年   5篇
  1981年   9篇
  1980年   10篇
  1979年   5篇
  1977年   5篇
  1976年   5篇
  1975年   4篇
  1974年   6篇
  1973年   5篇
  1968年   5篇
  1961年   3篇
排序方式: 共有648条查询结果,搜索用时 15 毫秒
101.
Ferredoxins are iron–sulfur proteins involved in various one-electron transfer pathways. Ferredoxin levels decrease under adverse environmental conditions in photosynthetic organisms. In cyanobacteria, this decline is compensated by induction of flavodoxin, an isofunctional flavoprotein. Flavodoxin is not present in higher plants, but transgenic Nicotiana tabacum lines accumulating Anabaena flavodoxin in plastids display increased tolerance to different sources of environmental stress. As the degree of tolerance correlated with flavodoxin dosage in plastids of nuclear-transformed transgenic tobacco, we prepared plants expressing even higher levels of flavodoxin by direct plastid transformation. A suite of nuclear- and chloroplast-transformed lines expressing a wide range of flavodoxin levels, from 0.3 to 10.8?μmol?m?2, did not exhibit any detectable growth phenotype relative to the wild type. In the absence of stress, the contents of both chlorophyll a and carotenoids, as well as the photosynthetic performance (photosystem II maximum efficiency, photosystem II operating efficiency, electron transport rates and carbon assimilation rates), displayed a moderate increase with flavodoxin concentrations up to 1.3–2.6?μmol flavodoxin m?2, and then declined to wild-type levels. Stress tolerance, as estimated by the damage inflicted on exposure to the pro-oxidant methyl viologen, also exhibited a bell-shaped response, with a significant, dose-dependent increase in tolerance followed by a drop in the high-expressing lines. The results indicate that optimal photosynthetic performance and stress tolerance were observed at flavodoxin levels comparable to those of endogenous ferredoxin. Further increases in flavodoxin content become detrimental to plant fitness.  相似文献   
102.
The inherent cytotoxicity of aberrantly folded protein aggregates contributes substantially to the pathogenesis of amyloid diseases. It was recently shown that a class of evolutionary conserved proteins, called MOAG-4/SERF, profoundly alter amyloid toxicity via an autonomous but yet unexplained mode. We show that the biological function of human SERF1a originates from its atypical ability to specifically distinguish between amyloid and nonamyloid aggregation. This inherently unstructured protein directly affected the aggregation kinetics of a broad range of amyloidogenic proteins in vitro, while being inactive against nonamyloid aggregation. A representative biophysical analysis of the SERF1a:α-synuclein (aSyn) complex revealed that the amyloid-promoting activity resulted from an early and transient interaction, which was sufficient to provoke a massive increase of soluble aSyn amyloid nucleation templates. Therefore, the autonomous amyloid-modifying activity of SERF1a observed in living organisms relies on a direct and dedicated manipulation of the early stages in the amyloid aggregation pathway.  相似文献   
103.
ML Hanke  A Angle  T Kielian 《PloS one》2012,7(8):e42476
Bacterial biofilms represent a significant therapeutic challenge based on their ability to evade host immune and antibiotic-mediated clearance. Recent studies have implicated IL-1β in biofilm containment, whereas Toll-like receptors (TLRs) had no effect. This is intriguing, since both the IL-1 receptor (IL-1R) and most TLRs impinge on MyD88-dependent signaling pathways, yet the role of this key adaptor in modulating the host response to biofilm growth is unknown. Therefore, we examined the course of S. aureus catheter-associated biofilm infection in MyD88 knockout (KO) mice. MyD88 KO animals displayed significantly increased bacterial burdens on catheters and surrounding tissues during early infection, which coincided with enhanced dissemination to the heart and kidney compared to wild type (WT) mice. The expression of several proinflammatory mediators, including IL-6, IFN-γ, and CXCL1 was significantly reduced in MyD88 KO mice, primarily at the later stages of infection. Interestingly, immunofluorescence staining of biofilm-infected tissues revealed increased fibrosis in MyD88 KO mice concomitant with enhanced recruitment of alternatively activated M2 macrophages. Taken in the context of previous studies with IL-1β, TLR2, and TLR9 KO mice, the current report reveals that MyD88 signaling is a major effector pathway regulating fibrosis and macrophage polarization during biofilm formation. Together these findings represent a novel example of the divergence between TLR and MyD88 action in the context of S. aureus biofilm infection.  相似文献   
104.
Bacteriophages have been known to be present in the gut for many years, but studies of relationships between these viruses and their hosts in the intestine are still in their infancy. We isolated three bacteriophages specific for an enteroaggregative O104:H4 Escherichia coli (EAEC) strain responsible for diarrhoeal diseases in humans. We studied the replication of these bacteriophages in vitro and in vivo in a mouse model of gut colonization. Each bacteriophage was able to replicate in vitro in both aerobic and anaerobic conditions. Each bacteriophage individually reduced biofilms formed on plastic pegs and a cocktail of the three bacteriophages was found to be more efficient. The cocktail was also able to infect bacterial aggregates formed on the surface of epithelial cells. In the mouse intestine, bacteriophages replicated for at least 3 weeks, provided the host was present, with no change in host levels in the faeces. This model of stable and continuous viral replication provides opportunities for studying the long-term coevolution of virulent bacteriophages with their hosts within a mammalian polymicrobial ecosystem.  相似文献   
105.
??Antonovka?? has long been recognised as a major source of scab (Venturia inaequalis) resistance useful for apple breeding worldwide. Both major gene resistances in the form of the Rvi10 and Rvi17 and quantitative resistance, collectively identified as VA, have been identified in different accessions of ??Antonovka??. Most of the ??Antonovka?? scab resistance used in apple-breeding programmes around the world can be traced back to Schmidt ??Antonovka?? and predominantly its B VIII progenies 33,25 (PI 172623), 34,6 (PI 172633), 33,8 (PI 172612) and 34,5 (PI 172632). Using genetic profile reconstruction, we have identified ??common ??Antonovka?? ?? as the progenitor of the B VIII family, which is consistent with it having been a commercial cultivar in Poland and the single source of scab resistance used by Dr. Martin Schmidt. The major ??Antonovka?? scab resistance genes mapped to date are located either very close to Rvi6, or about 20?C25?cM above it, but their identities need further elucidation. The presence of the 139?bp allele of the CH-Vf1 microsatellite marker known to be associated with Rvi17 (Va1) in most of the ??Antonovka?? germplasm used in breeding suggests that it plays a central role in the resistance. The nature and the genetic relationships of the scab resistance in these accessions as well as a number of apple cultivars derived from ??Antonovka??, such as, ??Freedom??, ??Burgundy?? and ??Angold??, are discussed. The parentage of ??Reglindis?? is unclear, but the cultivar commercialised as ??Reglindis?? was confirmed to be an Rvi6 cultivar.  相似文献   
106.
107.
The addition of a caffeinated green tea, Camellia sinensis L., filtrate (1%) to the nucleopolyhedrovirus (SeMNPV) of the beet armyworm, Spodoptera exigua (Hübner), provided almost complete protection following UVB irradiation (30 min) in laboratory tests. There were few differences in UV protection when extracts were prepared at 27 or at 90°C. Moreover, few differences in UV protection were demonstrated following infusion times of 5, 15, 30, and 60 min at 90°C. At a 1% concentration, decaffeinated and caffeinated green teas were equally effective as UV protectants. At lower concentrations (0.1, 0.01, and 0.001%) caffeinated green tea provided greater UV protection (UVB/UVB 30, 60 min). Virus/tea extracts (caffeinated), under field conditions at 1 and 5%, were ineffective as UV screens. At a 10% concentration, some UV protection was provided and UV protection further increased in a concentration-dependent manner.  相似文献   
108.
Phytic acid (myo-inositol hexakisphosphate, InsP6) is an important phosphate store and signal molecule in plants. However, low-phytate plants are being developed to minimize the negative health effects of dietary InsP6 and pollution caused by undigested InsP6 in animal waste. InsP6 levels were diminished in transgenic potato plants constitutively expressing an antisense gene sequence for myo-inositol 3-phosphate synthase (IPS, catalysing the first step in InsP6 biosynthesis) or Escherichia coli polyphosphate kinase. These plants were less resistant to the avirulent pathogen potato virus Y and the virulent pathogen tobacco mosaic virus (TMV). In Arabidopsis thaliana, mutation of the gene for the enzyme catalysing the final step of InsP6 biosynthesis (InsP5 2-kinase) also diminished InsP6 levels and enhanced susceptibility to TMV and to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae. Arabidopsis thaliana has three IPS genes (AtIPS1-3). Mutant atips2 plants were depleted in InsP6 and were hypersusceptible to TMV, turnip mosaic virus, cucumber mosaic virus and cauliflower mosaic virus as well as to the fungus Botrytis cinerea and to P. syringae. Mutant atips2 and atipk1 plants were as hypersusceptible to infection as plants unable to accumulate salicylic acid (SA) but their increased susceptibility was not due to reduced levels of SA. In contrast, mutant atips1 plants, which were also depleted in InsP6, were not compromised in resistance to pathogens, suggesting that a specific pool of InsP6 regulates defence against phytopathogens.  相似文献   
109.
110.
Cell wall formation by soybean callus protoplasts   总被引:4,自引:0,他引:4  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号