首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   9篇
  2023年   1篇
  2021年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   8篇
  2014年   10篇
  2013年   5篇
  2012年   7篇
  2011年   10篇
  2010年   8篇
  2009年   2篇
  2008年   5篇
  2007年   5篇
  2006年   6篇
  2005年   7篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   9篇
  2000年   1篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1993年   4篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   6篇
  1987年   2篇
  1986年   9篇
  1985年   4篇
  1984年   4篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1966年   1篇
  1937年   1篇
  1934年   2篇
  1931年   3篇
  1930年   2篇
  1929年   2篇
  1927年   3篇
排序方式: 共有174条查询结果,搜索用时 218 毫秒
51.
Pulmonary invades the lung parenchyma and vessels, causing necrotizing pneumonia and massive hemoptysis in immunocompromised patients. Medical treatment alone often fails to clear the organism. Early surgical intervention is advocated in localized disease to remove infection near pulmonary vessels. The resection is limited in an attempt to preserve as much lung function as possible. However, preexisting cavitations and lung disease predispose to postoperative space problems, including prolonged air leak, bronchopleural fistula, and empyema. Muscle flaps provide a solution to these problems by obliterating residual space and providing protective coverage to the bronchial stump. The authors present four cases of pulmonary aspergillosis treated by multimodality therapy and extrathoracic muscle flap transposition. Factors that may contribute to successful treatment include underlying condition of the host and history of cancer, radiation therapy, and great vessel involvement. Despite aggressive medical and surgical therapy, pulmonary aspergillosis has a poor prognosis.  相似文献   
52.
The purpose of this study was to determine whether the adenosine A1/A2a receptor agonist AMP-579 induces acute and delayed preconditioning against in vivo myocardial stunning. Regional stunning was produced by 15 min of coronary artery occlusion and 3 h of reperfusion (RP) in anesthetized open-chest pigs. In acute protection studies, animals were pretreated with saline, low-dose AMP-579 (15 microg/kg iv bolus 10 min before ischemia), or high-dose AMP-579 (50 microg/kg iv at 14 microg/kg bolus + 1.2 microg.kg(-1).min(-1) for 30 min before coronary occlusion). The delayed preconditioning effects of AMP-579 were evaluated 24 h after administration of saline vehicle or high-dose AMP-579 (50 microg/kg iv). Load-insensitive contractility was assessed by measuring regional preload recruitable stroke work (PRSW) and PRSW area. Acute preconditioning with AMP-579 dose dependently improved regional PRSW: 129 +/- 5 and 100 +/- 2% in high- and low-dose AMP-579 groups, respectively, and 78 +/- 5% in the control group at 3 h of RP. Administration of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.7 mg/kg) blocked the acute protective effect of high-dose AMP-579, indicating that these effects are mediated through A1 receptor activation. Delayed preconditioning with AMP-579 significantly increased recovery of PRSW area: 64 +/- 5 vs. 33 +/- 5% in control at 3 h of RP. In isolated perfused rat heart studies, kinetics of the onset and washout of AMP-579 A1 and A2a receptor-mediated effects were distinct compared with those of other adenosine receptor agonists. The unique nature of the adenosine agonist AMP-579 may play a role in its ability to induce delayed preconditioning against in vivo myocardial stunning.  相似文献   
53.
Plant Cell, Tissue and Organ Culture (PCTOC) -  相似文献   
54.
Using the strictly neutral model as a null hypothesis, we tested for deviations from expected levels of nucleotide polymorphism at the alcohol dehydrogenase locus (Adh-1) within and among four species of pocket gophers (Geomys bursarius major, G. knoxjonesi, G. texensis llanensis, and G. attwateri). The complete protein-encoding region was examined, and 10 unique alleles, representing both electromorphic and cryptic alleles, were used to test hypotheses (e.g., the neutral model) concerning the maintenance of genetic variation. Nineteen variable sites were identified among the 10 alleles examined, including 9 segregating sites occurring in synonymous positions and 10 that were nonsynonymous. Several statistical methods, including those that test for within-species variation as well as those that examine variation within and among species, failed to reject the null hypothesis that variation (both within and between species of Geomys) at the Adh locus is consistent with the neutral theory. However, there was significant heterogeneity in the ratio of polymorphism to divergence across the gene, with polymorphisms clustered in the first half of the coding region and fixed differences clustered in the second half of the gene. Two alternative hypotheses are discussed as possible explanations for this heterogeneity: an old balanced polymorphism in the first half of the gene or a recent selective sweep in the second half of the gene.   相似文献   
55.
Experiments were performed to localize the hepatic microsomal enzymes of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol biosynthesis to the cytoplasmic or lumenal surface of microsomal vesicles. Greater than 90 percent of the activities of fatty acid-CoA ligase (EC 6.2.1.3), sn-glycerol 3-phosphate acyltransferase (EC 2.3.1.15), lysophosphatidic acid acyltransferase, diacylglycerol acyltransferase (EC 2.3.1.20), diacylglycerol cholinephosphotransferase (EC 2.7.8.2), and diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) was inactivated by proteolysis of intact microsomal vesicles. The phosphatidic acid phosphatase (EC 3.1.3.4) was not inactivated by any of the protease tested. Under conditions employed, <5 percent of the luminal mannose-6-phosphatase (EC 3.1.3.9) activity was lost. After microsomal integrity was disrupted with detergents, protease treatment resulted in a loss of >74 percent of the mannose-6-phosphatase activity. The latency of the mannose-6-phosphatase activity was not affected by protease treatment. Mannose-6-phosphatase latency was not decreased by the presence of the assay components of several of the lipid biosynthetic activities, indicating that those components did not disrupt the microsomal vesicles. None of the lipid biosynthetic activities appeared latent. The presence of a protease-sensitive component of these biosynthetic activities on the cytoplasmic surface of microsomal vesicles, and the absence of latency for any of these biosynthetic activities suggest that the biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum. The location of biosynthetic activities within the transverse plane of the endoplasmic reticulum is of particular interest for enzymes whose products may be either secreted or retained within the cell. Phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol account for the vast majority of hepatic glycerolipid biosynthesis. The phospholipids are utilized for hepatic membrane biogenesis and for the formation of lipoproteins, and the triacylglycerols are incorporated into lipoproteins or accumulate within the hepatocyte in certain disease states (14). The enzymes responsible for the biosynthesis of these glycerolipids (Scheme I) from fatty acids and glycerol-3P have all been localized to the microsomal subcellular fraction (12, 16, 29, 30). Microsomes are derived from the endoplasmic reticulum and are sealed vesicles which maintain proper sidedness. (11, 22). The external surface of these vesicles corresponds to the cytoplasmic surface of the endoplasmic reticulum. Macromolecules destined for secretion must pass into the lumen of the endoplasmic reticulum (5, 23). Uncharged molecules of up to approximately 600 daltons are able to enter the lumen of rat liver microsomes, but macromolecules and charged molecules of low molecular weight do not cross the vesicle membrane (10, 11). Because proteases neither cross the microsomal membrane nor destroy the permeability barrier of the microsomal vesicles, only the enzymes and proteins located on the cytoplasmic surface of microsomal vesicles are susceptible to proteolysis unless membrane integrity is disrupted (10, 11). By use of this approach, several enzymes and proteins have been localized in the transverse plane of microsomal membranes (11). With the possible exception of cytochrome P 450, all of the enzymes and proteins investigated were localized asymmetrically by the proteolysis technique (11). By studies of this type, as well as by product localization, glucose-6-phosphate (EC 3.1.3.9) has been localized to the luminal surface of microsomal vesicles (11) and of the endoplasmic reticulum (18, 19). All microsomal vesicles contain glucose-6-phosphatase (18, 19) which can effectively utilize mannose-6-P as a substrate, provided the permeability barrier of the vesicles has been disrupted to allow the substrate access to the active site located on the lumenal surface (4). An exact correspondence between mannose- 6-phosphate activity and membrane permeability to EDTA has been established (4). The latency of mannose-6-phosphatase activity provides a quantitative index of microsomal integrity (4.) Few of the microsomal enzymes in the synthesis of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol have been solubilized and/or purified, and little is known about the topography of these enzymes in the transverse or lateral planes of the endoplasmic reticulum. An asymmetric location of these biosynthetic enzymes on the cytoplasmic or lumenal surface of microsomal vesicles may provide a mechanism for regulation of the glycerolipids to be retained or secreted by the cell, and for the biogenesis of asymmetric phospholipid bilayers. In this paper, we report investigations on the localization of all seven microsomal enzymes (Scheme I) in the biosynthesis of triacylglycerol, phosphatidylcholine, and phosphatidylethanolamine, using the protease technique with mannose-6-phosphatase serving as luminal control activity. The latency of these lipid biosynthetic enzymes was also investigated, using the latency of mannose-6-phosphatase as an index of microsomal integrity.  相似文献   
56.
57.
BackgroundFamilies in high mortality settings need regular contact with high quality services, but existing population-based measurements of contacts do not reflect quality. To address this, in 2012, we designed linked household and frontline worker surveys for Gombe State, Nigeria, Ethiopia, and Uttar Pradesh, India. Using reported frequency and content of contacts, we present a method for estimating the population level coverage of high quality contacts.ConclusionsMeasuring content of care to reflect the quality of contacts can reveal missed opportunities to deliver best possible health care.  相似文献   
58.
Summary Derived from honeybees, melittin is a 26-amino acid, α-helical, membrane-attack protein that efficiently kills mammalian cells. To investigate the contribution of colloid-osmotic effects to the mechanism of cell death, we studied the effect of melittin on lymphocyte membrane permeability and cell volumes. Melittin concentrations of 0.5 to 2.0 μM induced release of membrane permeability markers without total disruption of the cell membrane. At these melittin concentrations, electrical-impedance cytometry demonstrated melittin-induced changes in red blood cell volumes (P<0.01), but no change in lymphocyte cell volumes (P>0.05). Streaming video microscopy, obtaining images of melittintreated lymphocytes at 80-ms intervals, demonstrated a loss of optical density (P<0.001) suggesting a flattening of the cell but no significant increase in cell perimeter (P>0.05). Real-time multiparameter flow cytometry of melittin-treated lymphocytes confirmed simultaneous loss of the cytoplasmic marker, calcein, and uptake of the DNA dye, ethidium homodimer, but demonstrated no increase in forward light scatter. Transmission-electron microscopy of melittin-treated lymphocytes showed normal cell volumes but discontinuities in the cell membrane suggesting direct membrane toxicity. We conclude that melittin causes lymphocyte death by a “leaky patch” mechanism that is independent of colloid-osmotic effects.  相似文献   
59.
Microcirculation is the primary mechanism for delivering lymphocytes to inflammatory tissues. Blood flow within microvessels ensures a supply of lymphocytes at the blood-endothelial interface. Whether the structure of the inflammatory microcirculation facilitates lymphocyte transmigration is less clear. To illuminate the microcirculatory changes associated with lymphocyte transmigration, we used intravital videomicroscopy to examine the dermal microcirculation after application of the epicutaneous antigen oxazolone. Intravascular injection of fluorescein-labeled dextran demonstrated focal topographic changes in the microcirculation. These focal changes had the appearance of loops or hairpin turns in the oxazolone-stimulated skin. Changes were maximal at 96 h and coincided with peak lymphocyte recruitment. To determine whether these changes were associated with lymphocyte transmigration, lymphocytes obtained from efferent lymph of draining lymph nodes at 96 h were fluorescently labeled and reinjected into inflammatory microcirculation. Epifuorescence intravital video microscopy demonstrated focal areas were associated with lymphocyte slowing and occasional transmigration. In contrast, focal loops and lymphocyte slowing were rarely observed in the contralateral control microcirculation. Results suggest that structural adaptations in inflammatory microcirculation represented by focal topographic changes may contribute to regulation of tissue entry by recirculating lymphocytes.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号