首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   23篇
  国内免费   1篇
  2021年   5篇
  2019年   3篇
  2018年   2篇
  2016年   6篇
  2015年   8篇
  2014年   4篇
  2013年   10篇
  2012年   13篇
  2011年   12篇
  2010年   8篇
  2009年   10篇
  2008年   7篇
  2007年   9篇
  2006年   7篇
  2005年   12篇
  2004年   5篇
  2003年   5篇
  2002年   6篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1988年   2篇
  1985年   2篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1980年   3篇
  1979年   4篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1972年   3篇
  1970年   1篇
  1968年   1篇
  1967年   2篇
  1960年   2篇
  1959年   1篇
  1956年   1篇
  1950年   1篇
  1940年   1篇
  1938年   1篇
  1935年   1篇
  1934年   1篇
排序方式: 共有220条查询结果,搜索用时 31 毫秒
101.
It has been suggested that chronically hypoxic tumor cells may be more radiosensitive than acutely hypoxic or even aerobic cells. In the present study we have used the fact that chronically, but not acutely, hypoxic cells that are transformed with a vector containing an enhanced green fluorescent protein (EGFP) driven by a hypoxia-responsive promoter become green (high EGFP) at low oxygen concentrations and can be viably sorted from transplanted tumors in vitro. We showed that the fluorescence of HT 1080 human fibrosarcoma cells stably transfected with this vector increases constantly with decreasing O2 concentrations (<2%, longer than 1 h, half maximum approximately 0.2% for longer than 8 h), and that cells subjected to repeated cycles of hypoxia/reoxygenation (simulating acutely hypoxic cells) showed only background fluorescence. To test the radiosensitivity of acutely and chronically hypoxic cells in tumors, we isolated high-EGFP ("chronically hypoxic") and low-EGFP cells (containing both acutely hypoxic and aerobic cells) from HT 1080 xenograft tumors by fluorescence-activated cell sorting (FACS), immediately after in situ treatment with 20 Gy (ambient or clamped), and plated the cells to determine clonogenic survival in vitro. We found that the survival of high-EGFP cells after irradiation was not affected by clamping, suggesting that all, or almost all, of these cells were fully (chronically) hypoxic. Also, the survival of the low-EGFP cells irradiated under clamped conditions (acutely hypoxic cells) was not significantly different from that of the high-EGFR cells (chronically hypoxic) cells irradiated under nonclamped (or clamped) conditions. We therefore conclude that, at least in this tumor model, the radiation sensitivity of chronically hypoxic cells is similar to that of the acutely hypoxic cells.  相似文献   
102.
The recessive mutation of the def gene of pea (Pisum sativum L.) leads to the loss of the hilum, the abscission zone between the seed and the pod. Thereby, it reduces the free dispersal of the seeds through pod shattering. As a prerequisite for a gene isolation via a map-based cloning approach, bulked segregant analysis followed by single plant analyses of over 200 homozygous individuals of a population of 476 F2 plants derived from a cross between 'DGV' (def wild-type) and 'PF' (def mutant), were used to detect markers closely linked to the def locus. The AFLP technique in combination with silver staining was used to maximize numbers of reproducible marker loci. Fifteen AFLP loci showed a genetic distance less than 5 and two of them less than 1 centiMorgans (cM) to the gene of interest. AFLPs were converted into sequence tagged sites (STSs) and into a newly refined AFLP-based single locus marker named the 'sequence specified AFLP' (ssAFLP).  相似文献   
103.
Over the course of a few days, the bipotential embryonic mouse gonad differentiates into either a testis or an ovary. Though a few gene expression differences that underlie gonadal sex differentiation have been identified, additional components of the testicular and ovarian developmental pathways must be identified to understand this process. Here we report the use of a PCR-based cDNA subtraction to investigate expression differences that arise during gonadal sex differentiation. Subtraction of embryonic day 12.5 (E12.5) XY gonadal cDNA with E12.5 XX gonadal cDNA yielded 19 genes that are expressed at significantly higher levels in XY gonads. These genes display a variety of expression patterns within the embryonic testis and encode a broad range of proteins. A reciprocal subtraction (of E12.5 XX gonadal cDNA with E12.5 XY gonadal cDNA) yielded two genes, follistatin and Adamts19, that are expressed at higher levels in XX gonads. Follistatin is a well-known antagonist of TGFbeta family members while Adamts19 encodes a new member of the ADAMTS family of secreted metalloproteases.  相似文献   
104.
Here, we use a loss-of-function approach to demonstrate that the Arabidopsis (Arabidopsis thaliana) mitogen-activated protein kinase (MAPK) MPK6 plays a role in resistance to certain pathogens. MPK6-silenced Arabidopsis showed no apparent morphological phenotype or reduced fertility, indicating MPK6 is not required for development. However, resistances to an avirulent strain of Peronospora parasitica and avirulent and virulent strains of Pseudomonas syringae were compromised, suggesting that MPK6 plays a role in both resistance gene-mediated and basal resistance. Furthermore, this result demonstrates that MPK6's function cannot be fully complemented by other endogenous MAPKs. Although MPK6-silenced plants exhibited enhanced disease susceptibility, their ability to develop systemic acquired resistance or induced systemic resistance was unaffected. Expression of the pathogen-inducible gene VEGETATIVE STORAGE PROTEIN1 (VSP1) in MPK6-silenced plants was severalfold lower than in control plants, but the expression of other defense genes was comparable to the level observed in control plants. Taken together, these results provide direct evidence that a specific MAPK positively regulates VSP1 expression and resistance to a primary infection by certain pathogens, whereas systemic resistance and expression of several other defense genes appears to be mediated either by a functionally redundant MAPK(s) or independently from MPK6-dependent resistance.  相似文献   
105.
The programmed death 1/programmed death 1 ligand (PD-L) pathway is instrumental in peripheral tolerance. Blocking this pathway exacerbates experimental autoimmune diseases, but its role in autoimmune kidney disease has not been explored. Therefore, we tested the hypothesis that the programmed death 1 ligands (PD-L1 and PD-L2), provide a protective barrier during T cell- and macrophage (Mphi)-dependent autoimmune kidney disease. For this purpose, we compared nephrotoxic serum nephritis (NSN) in mice lacking PD-L1 (PD-L1(-/-)), PD-L2 (PD-L2(-/-)), or both (PD-L1/L2(-/-)) to wild-type (WT) C57BL/6 mice. Kidney pathology, loss of renal function, and intrarenal leukocyte infiltrates were increased in each PD-L(-/-) strain as compared with WT mice. Although the magnitude of renal pathology was similar in PD-L1(-/-) and PD-L2(-/-) mice, our findings suggest that kidney disease in each strain is regulated by distinct mechanisms. Specifically, we detected increased CD68(+) cells along with elevated circulating IgG and IgG deposits in glomeruli in PD-L2(-/-) mice, but not PD-L1(-/-) mice. In contrast, we detected a rise in activated CD8(+) T cells in PD-L1(-/-) mice, but not PD-L2(-/-) mice. Furthermore, since PD-L1 is expressed by parenchymal and hemopoietic cells in WT kidneys, we explored the differential impact of PD-L1 expression on these cell types by inducing NSN in bone marrow chimeric mice. Our results indicate that PD-L1 expression on hemopoietic cells, and not parenchymal cells, is primarily responsible for limiting leukocyte infiltration during NSN. Taken together, our findings indicate that PD-L1 and PD-L2 provide distinct negative regulatory checkpoints poised to suppress autoimmune renal disease.  相似文献   
106.
Apoptosis signaling is involved in both physiological tissue homeostasis and acute and chronic diseases. The role of regulatory apoptosis signaling molecules and their organ-specific functions are less defined. Therefore, we investigated the loss of the anti-apoptotic cellular FLICE-inhibitory protein (cFLIP) and the mechanisms of the resulting lethal organ failure in vivo using inducible knockout mice. These were generated by crossing floxed cFLIP mice to a tamoxifen inducible Rosa26-creERT2 mouse strain. Death following global loss of cFLIP resulted from liver failure, accumulation of M1-polarized macrophages and accompanying hepatic cell death and inflammation. Apoptosis was also prominent in immune cells, the kidney and intestinal epithelial cells (IECs) but not in cardiomyocytes. Cellular injury led to the release of damage-associated molecular patterns (DAMPs) and the induction of innate immune receptors including toll-like receptors (TLRs) 4 and 9, and stimulator of interferon genes (STING). Transplantation of bone marrow with intact cFLIP or depletion of macrophages prevented the phenotype of acute liver failure. Interestingly, compound deletion of cFLIP in bone marrow-derived cells and hepatocytes did not promote organ failure. Thus, cFLIP exerts a critical role in tissue homeostasis by preventing the activation of monocytic cells and innate immunity, which causes cell death and inflammation in susceptible tissues. These results encourage the development of organ-specific anti-apoptotic and anti-inflammatory therapies in acute organ failure.The mortality of acute organ failure is high and the underlying pathophysiological mechanisms are poorly understood. Cellular injury from controlled (apoptosis and necroptosis) or uncontrolled (necrosis) cell death and metabolic, regulatory modes of tissue turnover (autophagy) contribute to the regulation of tissue homeostasis. Even minor alterations in the finely tuned balance of proliferation and cell death can lead to severe organ dysfunction or cancer.1 In hepatocytes, apoptosis can be initiated through an extrinsic or intrinsic signaling pathway. Activation of the extrinsic signaling cascade involves cell surface bound receptors among which the tumor necrosis factor (TNF)-receptor superfamily is the most prominent.2 Receptor-mediated apoptosis involves formation of an intracellular death-inducing signaling complex (DISC), which includes procaspase 8 and cellular FLICE-inhibitory protein (cFLIP) among others.2 cFLIP is a caspase 8 homolog and exerts anti-apoptotic function by blocking caspase 8 activation. Loss of cFLIP has been shown to result in embryonic lethality from increased apoptosis of cardiomyocytes.3 cFLIP is critically involved in apoptosis- and stress-signaling pathways in IECs,4 hepatocytes,5, 6, 7 lymphocytes8 and myeloid lineage-derived cells.9 Recently, Piao et al.10 showed that deletion of cFLIP using different transgenic mouse strains impaired hepatocyte and IEC survival by inducing cell death dependent on TNF, Fas ligand and TNF-related apoptosis-inducing ligand (TRAIL). Additionally, a Mx1-Cre line was used to assess the role of cFLIP in global cellular homeostasis and in these mice a phenotype with fatal hepatitis was observed. However, these studies did not exclude that interferon (IFN)-dependent signals triggered by poly I:C could promote cellular injury through, for example, TLR3 and melanoma differentiation-associated protein 5 (MDA-5). Also, the underlying pathomechanisms of this phenotype remained unresolved.To investigate the mechanisms of cFLIP-induced organ failure, we generated mice with conditional, ubiquitous deletion of cFLIP by crossing floxed cFLIPf/f mice to a tamoxifen-inducible Rosa26-creERT2 mouse strain. Loss of cFLIP resulted in acute liver failure characterized hypoglycemia and hyperbilirubinemia, and was accompanied by depletion of intrahepatic leukocytes and the activation of inflammatory macrophages. All mice died within 96 h. Interestingly, this phenotype was not explained by the loss of cFLIP in hepatocytes or hematopoietic cells alone, indicating an organ-spanning crosstalk or the involvement of further compartments. Furthermore, we show that DAMPs, including cell-free double-stranded (ds)DNA, released during cell death induce upregulation and activation of dsDNA-sensing endosomal and cytosolic signaling pathways, namely TLR9 and STING, which contribute to an overwhelming inflammatory immune response and cell death. This phenotype was prevented by replenishment of cFLIP in bone marrow-derived cells (BMC) or depletion of macrophages.  相似文献   
107.
Fungal mycelia are exposed to heterogenic substrates. The substrate in the central part of the colony has been (partly) degraded, whereas it is still unexplored at the periphery of the mycelium. We here assessed whether substrate heterogeneity is a main determinant of spatial gene expression in colonies of Aspergillus niger. This question was addressed by analyzing whole-genome gene expression in five concentric zones of 7-day-old maltose- and xylose-grown colonies. Expression profiles at the periphery and the center were clearly different. More than 25% of the active genes showed twofold differences in expression between the inner and outermost zones of the colony. Moreover, 9% of the genes were expressed in only one of the five concentric zones, showing that a considerable part of the genome is active in a restricted part of the colony only. Statistical analysis of expression profiles of colonies that had either been or not been transferred to fresh xylose-containing medium showed that differential expression in a colony is due to the heterogeneity of the medium (e.g., genes involved in secretion, genes encoding proteases, and genes involved in xylose metabolism) as well as to medium-independent mechanisms (e.g., genes involved in nitrate metabolism and genes involved in cell wall synthesis and modification). Thus, we conclude that the mycelia of 7-day-old colonies of A. niger are highly differentiated. This conclusion is also indicated by the fact that distinct zones of the colony grow and secrete proteins, even after transfer to fresh medium.  相似文献   
108.
109.
We studied the mechanisms underlying the severely impaired wound healing associated with human leukocyte-adhesion deficiency syndrome-1 (LAD1) using a murine disease model. In CD18(-/-) mice, healing of full-thickness wounds was severely delayed during granulation-tissue contraction, a phase where myofibroblasts play a major role. Interestingly, expression levels of myofibroblast markers alpha-smooth muscle actin and ED-A fibronectin were substantially reduced in wounds of CD18(-/-) mice, suggesting an impaired myofibroblast differentiation. TGF-beta signalling was clearly involved since TGF-beta1 and TGF-beta receptor type-II protein levels were decreased, while TGF-beta(1) injections into wound margins fully re-established wound closure. Since, in CD18(-/-) mice, defective migration leads to a severe reduction of neutrophils in wounds, infiltrating macrophages might not phagocytose apoptotic CD18(-/-) neutrophils. Macrophages would thus be lacking their main stimulus to secrete TGF-beta1. Indeed, in neutrophil-macrophage cocultures, lack of CD18 on either cell type leads to dramatically reduced TGF-beta1 release by macrophages due to defective adhesion to, and subsequent impaired phagocytic clearance of, neutrophils. Our data demonstrates that the paracrine secretion of growth factors is essential for cellular differentiation in wound healing.  相似文献   
110.
Menke M  Gerke V  Steinem C 《Biochemistry》2005,44(46):15296-15303
By means of scanning force and fluorescence microscopy of artificial membranes immobilized on mica surfaces, the lateral organization of the annexin A2/S100A10 heterotetramer (annexin A2t) and its influence on the lateral organization of the lipids within the membrane have been elucidated. Planar lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS) were prepared on atomically flat mica surfaces by the spreading of unilamellar vesicles. Fluorescence images of fluorescently labeled annexin A2t and scanning force microscopy images of nonlabeled protein bound to POPC/POPS bilayers show the formation of micrometer-sized lateral protein domains in the presence of 1 mM CaCl2. By means of scanning force microscopy, not only protein domains became discernible but also small membrane domains, which were attributed to POPS-enriched areas. A depletion of these POPS domains was observed in the vicinity of annexin A2t protein domains. These results indicate that annexin A2t is a peripheral membrane-binding complex capable of inducing lipid segregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号