首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3664篇
  免费   357篇
  国内免费   1篇
  2024年   5篇
  2023年   13篇
  2022年   23篇
  2021年   81篇
  2020年   53篇
  2019年   47篇
  2018年   83篇
  2017年   83篇
  2016年   133篇
  2015年   232篇
  2014年   229篇
  2013年   263篇
  2012年   340篇
  2011年   356篇
  2010年   224篇
  2009年   184篇
  2008年   265篇
  2007年   271篇
  2006年   241篇
  2005年   169篇
  2004年   159篇
  2003年   161篇
  2002年   145篇
  2001年   30篇
  2000年   13篇
  1999年   32篇
  1998年   26篇
  1997年   15篇
  1996年   10篇
  1995年   11篇
  1994年   8篇
  1993年   8篇
  1992年   13篇
  1991年   7篇
  1990年   12篇
  1989年   7篇
  1988年   8篇
  1987年   5篇
  1986年   8篇
  1985年   10篇
  1984年   7篇
  1983年   3篇
  1982年   7篇
  1981年   3篇
  1980年   8篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1965年   2篇
  1938年   1篇
排序方式: 共有4022条查询结果,搜索用时 421 毫秒
991.
Staphylococcus aureus is a versatile Gram‐positive pathogen that gains increasing importance due to the rapid spreading of resistances. Functional genomics technologies can provide new insights into the adaptational network of this bacterium and its response to environmental challenges. While functional genomics technologies, including proteomics, have been extensively used to study these phenomena in shake flask cultures, studies of bacteria from in vivo settings lack behind. Particularly for proteomics studies, the major bottleneck is the lack of sufficient proteomic coverage for low numbers of cells. In this study, we introduce a workflow that combines a pulse‐chase stable isotope labelling by amino acids in cell culture approach with high capacity cell sorting, on‐membrane digestion, and high‐sensitivity MS to detect and quantitatively monitor several hundred S. aureus proteins from a few million internalised bacteria. This workflow has been used in a proof‐of‐principle experiment to reveal changes in levels of proteins with a function in protection against oxidative damage and adaptation of cell wall synthesis in strain RN1HG upon internalisation by S9 human bronchial epithelial cells.  相似文献   
992.
Positron emission tomography-computed tomography (PET-CT) is superior compared to stand-alone PET in evaluation of malignancies. Few studies have employed high-resolution structural information to correct PET. We designed a semiautomatic algorithm using CT and PET to obtain a partial volume corrected (PVC) standardized uptake value (SUV) and a combined morphologic and functional parameter (multimodal SUV) for lymph node assessment. Lesions were segmented by a semiautomatic algorithm in CT images. Lesion volume was used for PVC and for calculating the multimodal SUV. The method was applied to 47 lymph nodes (30 patients) characterized as suspicious in 18F-fluorodeoxyglucose-PET-CT. In phantoms, PVC improved significantly the measured uptake of the lesion. In patients, 36 lymph nodes could be segmented without problems; in 11 lesions, a manual interaction was necessary. SUVs before PVC (mean 1.29) increased significantly (p < .0005) after PVC (mean 2.8). If SUV 2.5 was used as a threshold value to distinguish between benign and malignant lesions, 11 of the 47 lesions changed from benign to malignant after the PVC. The mean multimodal SUV was 0.39 mL for the benign lesions and 4.47 mL for the malignant lesions. In this work we presented a method for quantitative analysis of lymph nodes in PET-CT. PVC leads to significant differences in SUV.  相似文献   
993.
Members of Shc (src homology and collagen homology) family, p46shc, p52shc, p66shc have known to be related to cell proliferation and carcinogenesis. Whereas p46shc and p52shc drive the reaction forward, the role of p66shc in cancers remains to be understood clearly. Hence, their expression in cancers needs to be evaluated carefully so that Shc analysis may provide prognostic information in the development of carcinogenesis. In the present study, the expression of p66shc and its associate targets namely Eps8 (epidermal pathway substrate 8), Rac1 (ras-related C3 botulinum toxin substrate1) and Grb2 (growth factor receptor bound protein 2) were examined in fresh tissue specimens from patients with esophageal squamous cell carcinoma and esophageal adenocarcinoma using western blot analysis. A thorough analysis of both esophageal squamous cell carcinoma and adenocarcinoma showed p66shc expression to be significantly higher in both types of carcinomas as compared to the controls. The controls of adenocarcinoma show a higher basal expression level of p66shc as compared to the controls of squamous cell carcinoma. The expression level of downstream targets of p66shc i.e., eps8 and rac1 was also found to be consistently higher in human esophageal carcinomas, and hence correlated positively with p66shc expression. However the expression of grb2 was found to be equal in both esophageal squamous cell carcinoma and adenocarcinoma. The above results suggest that the pathway operated by p66shc in cancers does not involve the participation of Ras and Grb2 as downstream targets instead it operates the pathway involving Eps8 and Rac1 proteins. From the results it is also suggestive that p66shc may have a role in the regulation of esophageal carcinomas and represents a possible mechanism of signaling for the development of squamous cell carcinoma and adenocarcinoma of esophagus.  相似文献   
994.
Segments are fundamental units in animal development which are made of distinct cell lineages separated by boundaries. Although boundaries show limited plasticity during their formation for sharpening, cell lineages make compartments that become tightly restricted as development goes on. Here, we characterize a unique case of breaking of the segment boundary in late drosophila embryos. During dorsal closure, specific cells from anterior compartments cross the segment boundary and enter the adjacent posterior compartments. This cell mixing behaviour is driven by an anterior-to-posterior reprogramming mechanism involving de novo expression of the homeodomain protein Engrailed. Mixing is accompanied by stereotyped local cell intercalation, converting the segment boundary into a relaxation compartment important for tension-release during morphogenesis. This process of lineage switching and cell remodelling is controlled by JNK signalling. Our results reveal plasticity of segment boundaries during late morphogenesis and a role for JNK-dependent developmental reprogramming in this process.  相似文献   
995.
Previous studies have demonstrated that Marburg viruses (MARV) and Ebola viruses (EBOV) inhibit interferon (IFN)-α/β signaling but utilize different mechanisms. EBOV inhibits IFN signaling via its VP24 protein which blocks the nuclear accumulation of tyrosine phosphorylated STAT1. In contrast, MARV infection inhibits IFNα/β induced tyrosine phosphorylation of STAT1 and STAT2. MARV infection is now demonstrated to inhibit not only IFNα/β but also IFNγ-induced STAT phosphorylation and to inhibit the IFNα/β and IFNγ-induced tyrosine phosphorylation of upstream Janus (Jak) family kinases. Surprisingly, the MARV matrix protein VP40, not the MARV VP24 protein, has been identified to antagonize Jak and STAT tyrosine phosphorylation, to inhibit IFNα/β or IFNγ-induced gene expression and to inhibit the induction of an antiviral state by IFNα/β. Global loss of STAT and Jak tyrosine phosphorylation in response to both IFNα/β and IFNγ is reminiscent of the phenotype seen in Jak1-null cells. Consistent with this model, MARV infection and MARV VP40 expression also inhibit the Jak1-dependent, IL-6-induced tyrosine phosphorylation of STAT1 and STAT3. Finally, expression of MARV VP40 is able to prevent the tyrosine phosphorylation of Jak1, STAT1, STAT2 or STAT3 which occurs following over-expression of the Jak1 kinase. In contrast, MARV VP40 does not detectably inhibit the tyrosine phosphorylation of STAT2 or Tyk2 when Tyk2 is over-expressed. Mutation of the VP40 late domain, essential for efficient VP40 budding, has no detectable impact on inhibition of IFN signaling. This study shows that MARV inhibits IFN signaling by a mechanism different from that employed by the related EBOV. It identifies a novel function for the MARV VP40 protein and suggests that MARV may globally inhibit Jak1-dependent cytokine signaling.  相似文献   
996.
Biological signal transduction commonly involves cooperative interactions in the binding of ligands to their receptors. In many cases, ligand concentrations in vivo are close to the value of the dissociation constant of their receptors, resulting in the phenomenon of ligand depletion. Using examples based on rotational bias of bacterial flagellar motors and calcium binding to mammalian calmodulin, we show that ligand depletion diminishes cooperativity and broadens the dynamic range of sensitivity to the signaling ligand. As a result, the same signal transducer responds to different ranges of signal with various degrees of cooperativity according to its effective cellular concentration. Hence, results from in vitro dose-response analyses cannot be applied directly to understand signaling in vivo. Moreover, the receptor concentration is revealed to be a key element in controlling signal transduction and we propose that its modulation constitutes a new way of controlling sensitivity to signals. In addition, through an analysis of the allosteric enzyme aspartate transcarbamylase, we demonstrate that the classical Hill coefficient is not appropriate for characterizing the change in conformational state upon ligand binding to an oligomeric protein (equivalent to a dose-response curve), because it ignores the cooperativity of the conformational change for the corresponding equivalent monomers, which are generally characterized by a Hill coefficient . Therefore, we propose a new index of cooperativity based on the comparison of the properties of oligomers and their equivalent monomers.  相似文献   
997.
The pooid subfamily of grasses includes some of the most important crop, forage and turf species, such as wheat, barley and Lolium. Developing genomic resources, such as whole-genome physical maps, for analysing the large and complex genomes of these crops and for facilitating biological research in grasses is an important goal in plant biology. We describe a bacterial artificial chromosome (BAC)-based physical map of the wild pooid grass Brachypodium distachyon and integrate this with whole genome shotgun sequence (WGS) assemblies using BAC end sequences (BES). The resulting physical map contains 26 contigs spanning the 272 Mb genome. BES from the physical map were also used to integrate a genetic map. This provides an independent validation and confirmation of the published WGS assembly. Mapped BACs were used in Fluorescence In Situ Hybridisation (FISH) experiments to align the integrated physical map and sequence assemblies to chromosomes with high resolution. The physical, genetic and cytogenetic maps, integrated with whole genome shotgun sequence assemblies, enhance the accuracy and durability of this important genome sequence and will directly facilitate gene isolation.  相似文献   
998.
The molecular basis for the interaction of insulin granules with the cortical cytoskeleton of pancreatic β-cells remains unknown. We have proposed that binding of the granule protein ICA512 to the PDZ domain of β2-syntrophin anchors granules to actin filaments and that the phosphorylation/dephosphorylation of β2-syntrophin regulates this association. Here we tested this hypothesis by analyzing INS-1 cells expressing GFP-β2-syntrophin through the combined use of biochemical approaches, imaging studies by confocal and total internal reflection fluorescence microscopy as well as electron microscopy. Our results support the notion that β2-syntrophin restrains the mobility of cortical granules in insulinoma INS-1 cells, thereby reducing insulin secretion and increasing insulin stores in resting cells, while increasing insulin release upon stimulation. Using mass spectrometry, in vitro phosphorylation assays and β2-syntrophin phosphomutants we found that phosphorylation of β2-syntrophin on S75 near the PDZ domain decreases its binding to ICA512 and correlates with increased granule motility, while phosphorylation of S90 has opposite effects. We further show that Cdk5, which regulates insulin secretion, phosphorylates S75. These findings provide mechanistic insight into how stimulation displaces insulin granules from cortical actin, thus promoting their motility and exocytosis.  相似文献   
999.
A brief period of ischemia followed by timely reperfusion may lead to prolonged, yet reversible, contractile dysfunction (myocardial stunning). Damage to the myocardium occurs not only during ischemia, but also during reperfusion, where a massive release of oxygen-free radicals (OFR) occurs. We have previously utilized 2-DE and MS to define 57 protein spot changes during brief ischemia/reperfusion (15 min ischemia, 60 min reperfusion; 15I/60R) injury in a rabbit model (White, M. Y., Cordwell, S. J., McCarron, H. C. K., Prasan, A. M. et al., Proteomics 2005, 5, 1395-1410) and shown that the majority of these occur because of physical and/or chemical PTMs. In this study, we subjected rabbit myocardium to 15I/60R in the presence of the OFR scavenger N-(2-mercaptopropionyl) glycine (MPG). Thirty-seven of 57 protein spots altered during 15I/60R remained at control levels in the presence of MPG (15I/60R + MPG). Changes to contractile proteins, including myosin light chain 2 (MLC-2) and troponin C (TnC), were prevented by the addition of MPG. To further investigate the individual effects of ischemia and reperfusion, we generated 2-DE gels from rabbit myocardium subjected to brief ischemia alone (15I/0R), and observed alterations of 33 protein spots, including 18/20 seen in both 15I/60R-treated and 15I/60R + MPG-treated tissue. The tissue was also subjected to ischemia in the presence of MPG (15I/0R + MPG), and 21 spot changes, representing 14 protein variants, remained altered despite the presence of the OFR scavenger. These ischemia-specific proteins comprised those involved in energy metabolism (lactate dehydrogenase and ATP synthase alpha), redox regulation (NADH ubiquinone oxidoreductase 51 kDa and GST Mu), and stress response (Hsp27 and 70, and deamidated alpha B-crystallin). We conclude that contractile dysfunction associated with myocardial stunning is predominantly caused by OFR damage at the onset of reperfusion, but that OFR-independent damage also occurs during ischemia. These ischemia-specific protein modifications may be indicative of early myocardial injury.  相似文献   
1000.
A high performance liquid chromatographic assay for the quantitative determination of apomorphine in human plasma is described. Sample clean-up and concentration was optimised using solid-phase extraction on C18 cartridges, enabling rapid and sensitive determination of apomorphine and potential metabolites. The limit of apomorphine quantification, using fluorescence detection, was 0.5 ng/mL. The assay was stability-indicating, and allowed the detection of analytes in the presence of commonly co-administered anti-Parkinsonian drugs. Apomorphine was stable in frozen plasma containing 0.14% (w/v) ascorbic acid for 98 days, and through four freeze-thaw cycles. The assay has been used in clinical pharmacokinetic studies of apomorphine in patients with Parkinson's disease, and in preliminary studies of novel apomorphine delivery devices in volunteers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号