首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4270篇
  免费   422篇
  国内免费   1篇
  2023年   12篇
  2022年   6篇
  2021年   88篇
  2020年   57篇
  2019年   54篇
  2018年   87篇
  2017年   85篇
  2016年   136篇
  2015年   246篇
  2014年   239篇
  2013年   287篇
  2012年   357篇
  2011年   376篇
  2010年   244篇
  2009年   206篇
  2008年   282篇
  2007年   297篇
  2006年   276篇
  2005年   204篇
  2004年   193篇
  2003年   190篇
  2002年   170篇
  2001年   46篇
  2000年   42篇
  1999年   50篇
  1998年   34篇
  1997年   25篇
  1996年   17篇
  1995年   21篇
  1994年   19篇
  1993年   12篇
  1992年   41篇
  1991年   33篇
  1990年   30篇
  1989年   23篇
  1988年   31篇
  1987年   23篇
  1986年   18篇
  1985年   22篇
  1984年   13篇
  1983年   12篇
  1982年   15篇
  1981年   10篇
  1980年   10篇
  1979年   7篇
  1978年   7篇
  1977年   5篇
  1976年   10篇
  1975年   5篇
  1974年   5篇
排序方式: 共有4693条查询结果,搜索用时 15 毫秒
91.
92.
Understanding how landscape change influences the distribution and densities of species, and the consequences of these changes, is a central question in modern ecology. The distribution of white-tailed deer (Odocoileus virginianus) is expanding across North America, and in some areas, this pattern has led to an increase in predators and consequently higher predation rates on woodland caribou (Rangifer tarandus caribou)—an alternate prey species that is declining across western Canada. Understanding the factors influencing deer distribution has therefore become important for effective conservation of caribou in Canada. Changing climate and anthropogenic landscape alteration are hypothesized to facilitate white-tailed deer expansion. Yet, climate and habitat alteration are spatiotemporally correlated, making these factors difficult to isolate. Our study evaluates the relative effects of snow conditions and human-modified habitat (habitat alteration) across space on white-tailed deer presence and relative density. We modeled deer response to snow depth and anthropogenic habitat alteration across a large latitudinal gradient (49° to 60°) in Alberta, Canada, using motion-sensitive camera data collected in winter and spring from 2015 to 2019. Deer distribution in winter and spring were best explained by models including both snow depth and habitat alteration. Sites with shallower snow had higher deer presence regardless of latitude. Increased habitat alteration increased deer presence in the northern portion of the study area only. Winter deer density was best explained by snow depth only, whereas spring density was best explained by both habitat alteration and the previous winter's snow depth. Our results suggest that limiting future habitat alteration or restoring habitat can alter deer distribution, thereby potentially slowing or reversing expansion, but that climate plays a significant role beyond what managers can influence. © 2020 The Wildlife Society.  相似文献   
93.
Oat (Avena sativa L.) seed is a rich resource of beneficial lipids, soluble fiber, protein, and antioxidants, and is considered a healthful food for humans. Little is known regarding the genetic controllers of variation for these compounds in oat seed. We characterized natural variation in the mature seed metabolome using untargeted metabolomics on 367 diverse lines and leveraged this information to improve prediction for seed quality traits. We used a latent factor approach to define unobserved variables that may drive covariance among metabolites. One hundred latent factors were identified, of which 21% were enriched for compounds associated with lipid metabolism. Through a combination of whole-genome regression and association mapping, we show that latent factors that generate covariance for many metabolites tend to have a complex genetic architecture. Nonetheless, we recovered significant associations for 23% of the latent factors. These associations were used to inform a multi-kernel genomic prediction model, which was used to predict seed lipid and protein traits in two independent studies. Predictions for 8 of the 12 traits were significantly improved compared to genomic best linear unbiased prediction when this prediction model was informed using associations from lipid-enriched factors. This study provides new insights into variation in the oat seed metabolome and provides genomic resources for breeders to improve selection for health-promoting seed quality traits. More broadly, we outline an approach to distill high-dimensional “omics” data to a set of biologically meaningful variables and translate inferences on these data into improved breeding decisions.  相似文献   
94.
Regulation of proteoglycan and glycosaminoglycan synthesis is critical throughout development, and to maintain normal adult functions in wound healing and the immune system, among others. It has become increasingly clear that these processes are also under tight metabolic control and that availability of carbohydrate and amino acid metabolite precursors has a role in the control of proteoglycan and glycosaminoglycan turnover. The enzyme uridine diphosphate (UDP)-glucose dehydrogenase (UGDH) produces UDP-glucuronate, an essential precursor for new glycosaminoglycan synthesis that is tightly controlled at multiple levels. Here, we review the cellular mechanisms that regulate UGDH expression, discuss the structural features of the enzyme, and use the structures to provide a context for recent studies that link post-translational modifications and allosteric modulators of UGDH to its function in downstream pathways:  相似文献   
95.
Psychostimulant (methamphetamine, cocaine) use disorders have a genetic component that remains mostly unknown. We conducted genome-wide quantitative trait locus (QTL) analysis of methamphetamine stimulant sensitivity. To facilitate gene identification, we employed a Reduced Complexity Cross between closely related C57BL/6 mouse substrains and examined maximum speed and distance traveled over 30 min following methamphetamine (2 mg/kg, i.p.). For maximum methamphetamine-induced speed following the second and third administration, we identified a single genome-wide significant QTL on chromosome 11 that peaked near the Cyfip2 locus (LOD = 3.5, 4.2; peak = 21 cM [36 Mb]). For methamphetamine-induced distance traveled following the first and second administration, we identified a genome-wide significant QTL on chromosome 5 that peaked near a functional intronic indel in Gabra2 coding for the alpha-2 subunit of the GABA-A receptor (LOD = 3.6–5.2; peak = 34–35 cM [66–67 Mb]). Striatal cis-expression QTL mapping corroborated Gabra2 as a functional candidate gene underlying methamphetamine-induced distance traveled. CRISPR/Cas9-mediated correction of the mutant intronic deletion on the C57BL/6J background to the wild-type C57BL/6NJ allele was sufficient to reduce methamphetamine-induced locomotor activity toward the wild-type C57BL/6NJ-like level, thus validating the quantitative trait variant (QTV). These studies show the power and efficiency of Reduced Complexity Crosses in identifying causal variants underlying complex traits. Functionally restoring Gabra2 expression decreased methamphetamine stimulant sensitivity and supports preclinical and human genetic studies implicating the GABA-A receptor in psychostimulant addiction-relevant traits. Importantly, our findings have major implications for studying psychostimulants in the C57BL/6J strain—the gold standard strain in biomedical research.  相似文献   
96.
In industrialized societies, more than 1 in 3 dogs and people currently qualify as overweight or obese. Experts in public health expect both these figures to rise. Although clinical treatment remains important, so are public perceptions and social norms. This article presents a thematic analysis of English-language mass media coverage on canine obesity from 2000 through 2009 and compares these results with a thematic analysis of articles on canine obesity in leading veterinary journals during the same time period. Drawing on Giddens's theory of structuration, this study identified articles that emphasized individual agency, environmental structure, or both as contributors to canine obesity. Comparisons with weight-related health problems in human populations were virtually absent from the veterinary sample. Although such comparisons were almost always present in the media sample, quotations from veterinarians and other spokespeople for the welfare of nonhuman animals emphasized the agency of individual caregivers (owners) over structural influences. Now that weight gain and obesity have been established as a pressing animal welfare problem, these results suggest a need for research and for interventions, such as media advocacy, that emphasize intersections between animal-owner agency, socioenvironmental determinants, and connections between animal welfare and human health.  相似文献   
97.
The increasing use of genetic information for the development of methods to study the diversity, distributions, and activities of protists in nature has spawned a new generation of powerful tools. For ecologists, one lure of these approaches lies in the potential for DNA sequences to provide the only immediately obvious means of normalizing the diverse criteria that presently exist for identifying and counting protists. A single, molecular taxonomy would allow studies of diversity across a broad range of species, as well as the detection and quantification of particular species of interest within complex, natural assemblages; goals that are not feasible using traditional methods. However, these advantages are not without their potential pitfalls and problems. Conflicts involving the species concept, disagreements over the true (physiological/ecological) meaning of genetic diversity, and a perceived threat by some that sequence information will displace knowledge regarding the morphologies, functions and physiologies of protistan taxa, have created debate and doubt regarding the efficacy and appropriateness of some genetic approaches. These concerns need continued discussion and eventual resolution as we move toward the irresistible attraction, and potentially enormous benefits, of the application of genetic approaches to protistan ecology.  相似文献   
98.
Gravity has been a constant force throughout the Earth’s evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in “functional weightlessness” were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function of the NADPH oxidase complex.  相似文献   
99.
Pharmaceutical excipients contain reactive groups and impurities due to manufacturing processes that can cause decomposition of active drug compounds. The aim of this investigation was to determine if commercially available oral disintegrating tablet (ODT) platforms induce active pharmaceutical ingredient (API) degradation. Benzocaine was selected as the model API due to known degradation through ester and primary amino groups. Benzocaine was either compressed at a constant pressure, 20 kN, or at pressure necessary to produce a set hardness, i.e., where a series of tablets were produced at different compression forces until an average hardness of approximately 100 N was achieved. Tablets were then stored for 6 months under International Conference on Harmonization recommended conditions, 25°C and 60% relative humidity (RH), or under accelerated conditions, 40°C and 75% RH. Benzocaine degradation was monitored by liquid chromatography–mass spectrometry. Regardless of the ODT platform, no degradation of benzocaine was observed in tablets that were kept for 6 months at 25°C and 60% RH. After storage for 30 days under accelerated conditions, benzocaine degradation was observed in a single platform. Qualitative differences in ODT platform behavior were observed in physical appearance of the tablets after storage under different temperature and humidity conditions.  相似文献   
100.
Global losses of seagrasses and mangroves, eutrophication‐driven increases in ephemeral algae, and macrophyte invasions have impacted estuarine detrital resources. To understand the implications of these changes on benthic ecosystem processes, we tested the hypotheses that detrital source richness, mix identity, and biomass influence benthic primary production, metabolism, and nutrient fluxes. On an estuarine muddy sandflat, we manipulated the availability of eight detrital sources, including mangrove, seagrass, and invasive and native algal species that have undergone substantial changes in distribution. Mixes of these detrital sources were randomly assigned to one of 12 treatments and dried detrital material was added to seventy‐two 0.25 m2 plots (= 6 plots). The treatments included combinations of either two or four detrital sources and high (60 g) or low (40 g) levels of enrichments. After 2 months, the dark, light, and net uptake of NH4+, dissolved inorganic nitrogen, and the dark efflux of dissolved organic nitrogen were each significantly influenced by the identity of detrital mixes, rather than detrital source richness or biomass. However, gross and net primary productivity, average oxygen flux, and net NOX and dissolved inorganic phosphorous fluxes were significantly greater in treatments with low than with high detrital source richness. These results demonstrate that changes in detrital source richness and mix identity may be important drivers of estuarine ecosystem performance. Continued impacts to estuarine macrophytes may, therefore, further alter detritus‐fueled productivity and processes in estuaries. Specific tests that address predicted future changes to detrital resources are required to determine the consequences of this significant environmental problem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号