首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1816篇
  免费   66篇
  2023年   32篇
  2022年   24篇
  2021年   62篇
  2020年   40篇
  2019年   59篇
  2018年   61篇
  2017年   66篇
  2016年   69篇
  2015年   68篇
  2014年   119篇
  2013年   133篇
  2012年   128篇
  2011年   199篇
  2010年   108篇
  2009年   78篇
  2008年   103篇
  2007年   100篇
  2006年   100篇
  2005年   78篇
  2004年   72篇
  2003年   62篇
  2002年   54篇
  2001年   11篇
  2000年   11篇
  1999年   4篇
  1998年   6篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1987年   2篇
  1986年   3篇
  1982年   1篇
  1979年   2篇
  1974年   3篇
  1973年   1篇
  1972年   2篇
  1969年   3篇
  1964年   1篇
  1963年   1篇
排序方式: 共有1882条查询结果,搜索用时 15 毫秒
31.
Gastric cancer is the fourth most prevalent malignancy worldwide and remains the second most common cause of cancer-related death globally. Understanding the molecular structure of gastric carcinogenesis might identify new diagnostic and therapeutic strategies for this disease. Thus, early detection of gastric cancer is a key measure to reduce the mortality and improve the prognosis of gastric cancer. There have recently been several reports that microRNAs (miRNAs) circulate in highly stable, cell-free forms in blood. Because serum and plasma miRNAs are relatively easy to access, circulating miRNAs also have great potential to serve as non-invasive biomarkers. Although a number of miRNAs associated with gastric cancer have been identified, the underlying mechanism of these miRNAs in tumorigenesis and tumor progression remains to be investigated. The purpose of this study is to identify the potential of serum miRNAs as biomarkers for early detection of gastric cancer patients. RNA was isolated using the High Pure miRNA Isolation Kit (Roche) following the manufacturer’s protocol. cDNA and preamplification protocols were obtained from the isolated plasma miRNAs. The BioMark? 96.96 Dynamic Array (Fluidigm Corporation) for real-time qPCR was used to simultaneously quantite the expression of 740 miRNAs. All statistical analyses were performed using the Biogazelle’s qbase PLUS 2.0 software. In this study, among 740 miRNAs that we analyzed only miR-195-5p was significantly (p < 0.05, fold changes = 13, 3) down-regulated in gastric cancer patients compared with control. We demonstrated that miR-195-5p is a novel tumor suppressor miRNA and may contribute to gastric carcinogenesis. The miRNA expression profile described in this study should contribute to future studies on the role of miRNAs in gastric cancer.  相似文献   
32.
Our aim in this study was to investigate the effect of moderate acute alcohol administration on cysteine protease mediated neuronal apoptosis and nitric oxide production in the traumatic brain injury. A total of 29 adult Sprague–Dawley male rats weighing 250–300 g were used. The rats were allocated into four groups. The first group was the control (sham-operated) group in which only a craniotomy was performed, the others were alcohol, trauma and trauma + alcohol groups. Caspase-3 enzyme activity in the trauma group increased significantly in comparison with the control group. The alcohol given group showed a decreased caspase-3 enzyme activity compared to the trauma group. The level of caspase-3 enzyme activity in the alcohol + trauma group decreased in comparison to the trauma group. SF/FEL ratio of cathepsin-L enzyme activity in the trauma group was significantly higher than in the control group. Our results indicate that moderate alcohol consumption may have protective effects on apoptotic cell death after traumatic brain injury. Protective effects of moderate ethanol consumption might be related to inhibition of lysosomal protease release and nitric oxide production.  相似文献   
33.
Here we report the association of the rs694539 variant of nicotinamide-N-methyltransferase gene with bipolar disorder in a case–control study of 95 bipolar disorder patients and 201 healthy controls (χ2 = 13.382, P = 0.001). With the polymerase chain reaction restriction fragment length polymorphism method we developed we were able to show the association for the first time. This new finding may provide evidence to understand the mechanism of the disease.  相似文献   
34.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, defined by the presence of resting tremor, muscular rigidity, bradykinesia, and postural instability. PD is characterized by the progressive loss of dopaminergic neurons within the substantia nigra pars compacta of the midbrain. The neuropathological hallmark of the disease is the presence of intracytoplasmic inclusions, called Lewy bodies (LBs) and Lewy neurites (LNs), containing α-synuclein, a small protein which is widely expressed in the brain. The α-synuclein gene, SNCA, is located on chromosome 4q22.1; SNCA-linked PD shows an autosomal dominant inheritance pattern with a relatively early onset age, and it usually progresses rapidly. Three missense mutations, A53T, A30P, and E46K, in addition to gene multiplications of the SNCA have been described so far. Although it is clear that LBs and LNs contain mainly the α-synuclein protein, the mechanism(s) which leads α-synuclein to accumulate needs to be elucidated. The primary question in the molecular pathology of PD is how wild-type α-synuclein aggregates in PD, and which interacting partner(s) plays role(s) in the aggregation process. It is known that dopamine synthesis is a stressfull event, and α-synuclein expression somehow affects the dopamine synthesis. The aberrant interactions of α-synuclein with the proteins in the dopamine synthesis pathway may cause disturbances in cellular mechanisms. The normal physiological folding state of α-synuclein is also important for the understanding of pathological aggregates. Recent studies on the α-synuclein protein and genome-wide association studies of the α-synuclein gene show that PD has a strong genetic component, and both familial and idiopathic PD have a common denominator, α-synuclein, at the molecular level. It is clear that the disease process in Parkinson’s disease, as in other neurodegenerative disorders, is very complicated; there can be several different molecular pathways which are responsible for diverse and possibly also unrelated functions inside the neuron, playing roles in PD pathogenesis.  相似文献   
35.
Vascular plants have lignified tissues that transport water, minerals, and photosynthetic products throughout the plant. They are the dominant primary producers in terrestrial ecosystems and capture significant quantities of atmospheric carbon dioxide (CO2) through photosynthesis. Some of the fixed CO2 is respired by the plant directly, with additional CO2 lost from rhizodeposits metabolized by root-associated soil microorganisms. Microbially-mediated mineralization of organic nitrogen (N) from plant byproducts (rhizodeposits, dead plant residues) followed by nitrification generates another greenhouse gas, nitrous oxide (N2O). In anaerobic soils, reduction of nitrate by microbial denitrifiers also produces N2O. The plant-microbial interactions that result in CO2 and N2O emissions from soil could be affected by genetic modification. Down-regulation of genes controlling lignin biosynthesis to achieve lower lignin concentration or a lower guaiacyl:syringyl (G:S) ratio in above-ground biomass is anticipated to produce forage crops with greater digestibility, improve short rotation woody crops for the wood-pulping industry and create second generation biofuel crops with low ligno-cellulosic content, but unharvested residues from such crops are expected to decompose quickly, potentially increasing CO2 and N2O emissions from soil. The objective of this review are the following: 1) to describe how plants influence CO2 and N2O emissions from soil during their life cycle; 2) to explain how plant residue chemistry affects its mineralization, contributing to CO2 and N2O emissions from soil; and 3) to show how modification of plant lignin biosynthesis could influence CO2 and N2O emissions from soil, based on experimental data from genetically modified cell wall mutants of Arabidopsis thaliana. Conceptual models of plants with modified lignin biosynthesis show how changes in phenology, morphology and biomass production alter the allocation of photosynthetic products and carbon (C) losses through rhizodeposition and respiration during their life cycle, and the chemical composition of plant residues. Feedbacks on the soil environment (mineral N concentration, soil moisture, microbial communities, aggregation) affecting CO2 and N2O emissions are described. Down-regulation of the Cinnamoyl CoA Reductase 1 (CCR1) gene is an excellent target for highly digestable forages and biofuel crops, but A. thaliana with this mutation has lower plant biomass and fertility, prolonged vegetative growth and plant residues that are more susceptible to biodegradation, leading to greater CO2 and N2O emissions from soil in the short term. The challenge in future crop breeding efforts will be to select tissue-specific genes for lignin biosynthesis that meet commercial demands without compromising soil CO2 and N2O emission goals.  相似文献   
36.
ABSTRACT

Circadian disruption has been linked with immune-related morbidities including autoimmune diseases. PERIOD3 (PER3) clock gene is a key player in the mammalian circadian system. This study evaluated the possible association of PER3 rs2797685 (G/A) polymorphism and susceptibility of autoimmune thyroid diseases (AITD) and assessed if this SNP contributes to disease characteristics and serum levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The PER3 rs2797685 (G/A) polymorphism was assessed in 125 patients with AITD [Graves’ disease (GD), 69; Hashimoto’s thyroiditis (HT), 56] and 115 unrelated healthy controls. Subjects carrying at least one variant allele of PER3 rs2797685 (GA+AA) had increased risk for GD (OR 1.9, 95% CI 1–3.61, p= .05). There were no differences in the frequencies of genotypes and alleles of the PER3 rs2797685 polymorphism between HT patients and control subjects. No association was observed between genotypes of the studied SNP and any of the disease characteristics in GD and HT patients. The GA+AA genotype of PER3 rs2797685 was associated with lower levels of IL-6 in patients with Graves’ disease. There were no differences between genotypes of the studied SNP regarding TNF-α levels in GD, HT or control groups. In conclusion, this study provides the first evidence for a genetic association between GD and the PER3 gene, highlighting the possible relevance of polymorphisms in clock genes in the etiopathogenesis of AITD. However, functional studies to identify the underlying molecular mechanisms of this association are needed to translate these findings to clinical applications.  相似文献   
37.
In the view of physiological role of H2O2, we investigated whether exogenous H2O2 application would affect short-term cold response of tomato and induce acclimation. Pretreatments were performed by immersing roots into 1 mM H2O2 solution for 1 h when transferring seedlings from seedling substrate to soil (acclimated group). Cold stress (3 °C for 16 h) caused significant reduction in relative water content (RWC) of control and non-acclimated (distilled water treated) groups when compared with unstressed plants. H2O2 promoted maintenance of relatively higher RWC under stress. Anthocyanin level in leaves of acclimated plants under cold stress was significantly higher than that of unstressed control and non-acclimated plants. Malondialdehyde (MDA) levels demonstrated low temperature induced oxidative damage to control and non-acclimated plants. MDA remained around unstressed conditions in acclimated plants, which demonstrate that H2O2 acclimation protected tissues against cold induced lipid peroxidation. H2O2 acclimation caused proline accumulation in roots under cold stress. Ascorbate peroxidase (APX) activity in roots of cold stressed and unstressed H2O2 acclimated plants increased when compared with control and non-acclimated plants, with highest increase in roots of acclimated plants under cold stress. CAT levels in roots of acclimated plants also increased, whereas levels remained unchanged in unstressed plants. Endogenous H2O2 levels significantly increased in roots of control and non-acclimated plants under cold stress. On the other hand, H2O2 content in roots of acclimated plants was significantly lower than control and non-acclimated plants under cold stress. The results presented here demonstrated that H2O2 significantly enhanced oxidative stress response by elevating the antioxidant status of tomato.  相似文献   
38.
39.
Abstract

In this study, bacteria were isolated from two different magnesite quarries in Turanocak and Ortaocak mine in Kütahya-Eski?ehir region, one of the largest processed magnesite reserves in Turkey. The obtained isolates have a potential to solve important magnesite pollutant CaCO3 but incapable to solve magnesium that has the most crucial role in the industry. Thus, potential bacteria were identified to be used for magnesite enrichment studies. The obtained isolates were identified and characterized according to the morphological, physiological, biochemical, and molecular techniques (16S rDNA PCR). According to the gene sequencing analysis Bacillus genus bacteria have the ability to solve CaCO3. The data of the 16S rDNA gene sequence showed that there were 13 active strains grouped in Bacillus. These active strains; Bacillus sp (3), Bacillus atrophaeus (2), Bacillus thuringiensis (1), Bacillus circulans (1), Bacillus simplex (3), Bacillus endophyticus (1) Bacillus drentensis (1) and Bacillus idriensis (1).  相似文献   
40.
The present study was conducted to explore the possible effects of different doses of lithium carbonate on thyroid functions, erythrocyte oxidant–antioxidant status, and osmotic fragility. Twenty-four Wistar-type male rats were equally divided into three groups: groups I and II received 0.1 and0.2 % lithium carbonate in their drinking water, respectively, for 30 days. The rats in group III served as controls, drinking tap water without added lithium. At the end of the experimental period, the erythrocyte osmotic fragility and the levels of triiodothyronine (T3), thyroxine (T4), thyroid-stimulating hormone (TSH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were measured in blood samples. Compared to controls, there was a statistically significant increase of TSH but decreases of the T3 and T4 levels in group II. Both experimental groups showed a statistically significant increase of the maximum osmotic fragility limit. The minimum osmotic fragility values of the animals in group II were statistically higher than those of controls. The standard hemolytic increment curve of both experimental groups was shifted to the right when compared to the curve obtained from the controls. Also, relative to controls, the activities of MDA and SOD were significantly higher and the GSH level lower in group II, but not so in group I. The results of the present study show that treatment with lithium carbonate may result in thyroid function abnormalities, increased oxidative damage, and possible compromise of the erythrocyte membrane integrity resulting from increased osmotic fragility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号