首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   2篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   6篇
  2015年   3篇
  2014年   5篇
  2013年   11篇
  2012年   15篇
  2011年   13篇
  2010年   3篇
  2009年   5篇
  2008年   12篇
  2007年   8篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1997年   1篇
  1973年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
91.
92.
Accurate determination of circadian phase is necessary for research and clinical purposes because of the influence of the master circadian pacemaker on multiple physiologic functions. Melatonin is presently the most accurate marker of the activity of the human circadian pacemaker. Current methods of analyzing the plasma melatonin rhythm can be grouped into three categories: curve-fitting, threshold-based and physiologically-based linear differential equations. To determine which method provides the most accurate assessment of circadian phase, we compared the ability to fit the data and the variability of phase estimates for seventeen different markers of melatonin phase derived from these methodological categories. We used data from three experimental conditions under which circadian rhythms - and therefore calculated melatonin phase - were expected to remain constant or progress uniformly. Melatonin profiles from older subjects and subjects with lower melatonin amplitude were less likely to be fit by all analysis methods. When circadian drift over multiple study days was algebraically removed, there were no significant differences between analysis methods of melatonin onsets (P = 0.57), but there were significant differences between those of melatonin offsets (P<0.0001). For a subset of phase assessment methods, we also examined the effects of data loss on variability of phase estimates by systematically removing data in 2-hour segments. Data loss near onset of melatonin secretion differentially affected phase estimates from the methods, with some methods incorrectly assigning phases too early while other methods assigning phases too late; missing data at other times did not affect analyses of the melatonin profile. We conclude that melatonin data set characteristics, including amplitude and completeness of data collection, differentially affect the results depending on the melatonin analysis method used.  相似文献   
93.

Background

Cognitive performance deteriorates during extended wakefulness and circadian phase misalignment, and some individuals are more affected than others. Whether performance is affected similarly across cognitive domains, or whether cognitive processes involving Executive Functions are more sensitive to sleep and circadian misalignment than Alertness and Sustained Attention, is a matter of debate.

Methodology/Principal Findings

We conducted a 2 × 12-day laboratory protocol to characterize the interaction of repeated partial and acute total sleep deprivation and circadian phase on performance across seven cognitive domains in 36 individuals (18 males; mean ± SD of age = 27.6±4.0 years). The sample was stratified for the rs57875989 polymorphism in PER3, which confers cognitive susceptibility to total sleep deprivation. We observed a deterioration of performance during both repeated partial and acute total sleep deprivation. Furthermore, prior partial sleep deprivation led to poorer cognitive performance in a subsequent total sleep deprivation period, but its effect was modulated by circadian phase such that it was virtually absent in the evening wake maintenance zone, and most prominent during early morning hours. A significant effect of PER3 genotype was observed for Subjective Alertness during partial sleep deprivation and on n-back tasks with a high executive load when assessed in the morning hours during total sleep deprivation after partial sleep loss. Overall, however, Subjective Alertness and Sustained Attention were more affected by both partial and total sleep deprivation than other cognitive domains and tasks including n-back tasks of Working Memory, even when implemented with a high executive load.

Conclusions/Significance

Sleep loss has a primary effect on Sleepiness and Sustained Attention with much smaller effects on challenging Working Memory tasks. These findings have implications for understanding how sleep debt and circadian rhythmicity interact to determine waking performance across cognitive domains and individuals.  相似文献   
94.
Researchers have successfully applied exome sequencing to discover causal variants in selected individuals with familial, highly penetrant disorders. We demonstrate the utility of exome sequencing followed by imputation for discovering low-frequency variants associated with complex quantitative traits. We performed exome sequencing in a reference panel of 761 African Americans and then imputed newly discovered variants into a larger sample of more than 13,000 African Americans for association testing with the blood cell traits hemoglobin, hematocrit, white blood count, and platelet count. First, we illustrate the feasibility of our approach by demonstrating genome-wide-significant associations for variants that are not covered by conventional genotyping arrays; for example, one such association is that between higher platelet count and an MPL c.117G>T (p.Lys39Asn) variant encoding a p.Lys39Asn amino acid substitution of the thrombpoietin receptor gene (p = 1.5 × 10−11). Second, we identified an association between missense variants of LCT and higher white blood count (p = 4 × 10−13). Third, we identified low-frequency coding variants that might account for allelic heterogeneity at several known blood cell-associated loci: MPL c.754T>C (p.Tyr252His) was associated with higher platelet count; CD36 c.975T>G (p.Tyr325) was associated with lower platelet count; and several missense variants at the α-globin gene locus were associated with lower hemoglobin. By identifying low-frequency missense variants associated with blood cell traits not previously reported by genome-wide association studies, we establish that exome sequencing followed by imputation is a powerful approach to dissecting complex, genetically heterogeneous traits in large population-based studies.  相似文献   
95.
96.
We explore the effects of probabilistic RNA partitioning during cell division on the normalized variance of RNA numbers across generations of bacterial populations. We first characterize these effects in model cell populations, where gene expression is modeled as a delayed stochastic process, as a function of the synchrony in cell division, the rate of division, and the RNA degradation rate. We further explore the additional variance that arises if the partitioning is biased. Next, in Escherichia coli cells expressing RNA tagged with MS2d-GFP, we measured the normalized variance of RNA numbers across several generations, with cell divisions synchronized by heat shock. We show that synchronized cell populations exhibit transient increases in normalized variance following cell divisions, as predicted by the model, which are not observed in unsynchronized populations. We conclude that errors in partitioning of RNA molecules generate diversity between the offspring of individual bacteria and thus constitute a form of reproductive bet-hedging.  相似文献   
97.
Neurodegenerative diseases are distinguished by characteristic protein aggregates initiated by disease‐specific ‘seed’ proteins; however, roles of other co‐aggregated proteins remain largely unexplored. Compact hippocampal aggregates were purified from Alzheimer's and control‐subject pools using magnetic‐bead immunoaffinity pulldowns. Their components were fractionated by electrophoretic mobility and analyzed by high‐resolution proteomics. Although total detergent‐insoluble aggregates from Alzheimer's and controls had similar protein content, within the fractions isolated by tau or Aβ1–42 pulldown, the protein constituents of Alzheimer‐derived aggregates were more abundant, diverse, and post‐translationally modified than those from controls. Tau‐ and Aβ‐containing aggregates were distinguished by multiple components, and yet shared >90% of their protein constituents, implying similar accretion mechanisms. Alzheimer‐specific protein enrichment in tau‐containing aggregates was corroborated for individuals by three analyses. Five proteins inferred to co‐aggregate with tau were confirmed by precise in situ methods, including proximity ligation amplification that requires co‐localization within 40 nm. Nematode orthologs of 21 proteins, which showed Alzheimer‐specific enrichment in tau‐containing aggregates, were assessed for aggregation‐promoting roles in C. elegans by RNA‐interference ‘knockdown’. Fifteen knockdowns (71%) rescued paralysis of worms expressing muscle Aβ, and 12 (57%) rescued chemotaxis disrupted by neuronal Aβ expression. Proteins identified in compact human aggregates, bound by antibody to total tau, were thus shown to play causal roles in aggregation based on nematode models triggered by Aβ1–42. These observations imply shared mechanisms driving both types of aggregation, and/or aggregate‐mediated cross‐talk between tau and Aβ. Knowledge of protein components that promote protein accrual in diverse aggregate types implicates common mechanisms and identifies novel targets for drug intervention.  相似文献   
98.
The effects of administration of Embelin (EMB) and Curcumin (CUR) on lipid peroxidation, hepatic glutathione antioxidant defense and hematopoietic cells were examined during N-nitrosodiethylamine (DENA-200 mg kg−1body wt, single I.P injection) initiated and Phenobarbital (PB-0.05% in drinking water orally for 13 weeks) promoted hepatocarcinogenesis in Wistar strain male albino rats. DENA/PB-induced hepatic damage was manifested by a significant drop in the hepatic glutathione antioxidant defense, increased lipid peroxidation and histological alterations like dysplasia, and atypical cells with abnormal chromatin pattern. Treatment with Curcumin (100 mg kg−1body wt) and Embelin (50 mg kg−1body wt) prevented the drop in hepatic glutathione antioxidant defense, decreased lipid peroxidation, minimized the histological alterations induced by DENA/PB, but showed toxic effects on the hematopoietic cells. Results indicate the beneficial effects of Embelin and Curcumin against oxidative tissue damage during chemically-induced hepatocarinogenesis in rats.  相似文献   
99.

Background

The relevance of discrete localization of hepatobiliary transporters in specific membrane microdomains is not well known.

Aim

To determine whether the Na+/taurocholate cotransporting polypeptide (Ntcp), the main hepatic sinusoidal bile salt transporter, is localized in specific membrane microdomains.

Methods

Presence of Ntcp in membrane rafts obtained from mouse liver was studied by immunoblotting and immunofluorescence. HEK-293 cells stably transfected with rat Ntcp were used for in vitro studies. Expression, localization and function of Ntcp in these cells were assessed by immunoblotting, immunofluorescence and biotinylation studies and Na+-dependent taurocholate uptake assays, respectively. The effect of cholesterol depletion/repletion assays on Ntcp function was also investigated.

Results

Ntcp localized primarily to membrane rafts in in vivo studies and localized partially in membrane rafts in transfected HEK-293 cells. In these cells, membrane cholesterol depletion resulted in a shift of Ntcp localization into non-membrane rafts, which correlated with a 2.5-fold increase in taurocholate transport. Cholesterol repletion shifted back part of Ntcp into membrane rafts, and normalized taurocholate transport to values similar to control cells.

Conclusion

Ntcp localizes in membrane rafts and its localization and function are regulated by membrane cholesterol content. This may serve as a novel regulatory mechanism of bile salt transport in liver.  相似文献   
100.
Aims:  To establish the role of maltoporin (LamB) in adherence of enteropathogenic Escherichia coli (EPEC) to epithelial cells in vitro.
Methods and Results:  Three strains, wild type (WT) EPEC, a maltoporin (LamB) mutant ΔlamB , and DH5α were used to study adherence to cultured HEp-2 cells. Mutant ΔlamB was found to be deficient in adherence compared to WT EPEC. Adherence of ΔlamB was restored to wild type levels when complemented with the cloned lamB gene. The non–adherent strain DH5α also adhered to HEp-2 cells when it harboured the cloned lamB gene. The LamB protein was isolated from WT EPEC by electroelution and antibodies were raised in rabbits. The specificity of the antibodies was analysed by Western blotting. Anti-LamB antiserum reduced adherence of WT EPEC to HEp-2 cells. The LamB protein was coated on latex beads and the beads adhered to HEp-2 cells. Anti-LamB antiserum prevented bead adherence to HEp-2 cells. Multiple sequence alignment showed that the L9 loop of EPEC LamB had four amino acids different from the L9 loop of LamB from several other related pathogens.
Conclusions:  LamB serves as an alternative or additional adherence factor for EPEC.
Significance and Impact of the Study:  Adherence is an important component of the pathogenesis of noninvasive pathogens like EPEC. A putative adhesin such as LamB, which has already been found to be co-expressed with virulence factor EspB may be a potential vaccine candidate for control of EPEC and related pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号