首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   44篇
  2022年   2篇
  2021年   2篇
  2019年   2篇
  2018年   3篇
  2016年   3篇
  2015年   6篇
  2014年   7篇
  2013年   6篇
  2012年   11篇
  2011年   13篇
  2010年   5篇
  2009年   6篇
  2008年   15篇
  2007年   15篇
  2006年   9篇
  2005年   20篇
  2004年   10篇
  2003年   17篇
  2002年   10篇
  2001年   12篇
  2000年   12篇
  1999年   10篇
  1998年   11篇
  1997年   5篇
  1996年   14篇
  1995年   7篇
  1994年   7篇
  1993年   4篇
  1992年   12篇
  1991年   2篇
  1990年   11篇
  1989年   8篇
  1988年   7篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1977年   3篇
  1975年   2篇
  1973年   4篇
  1972年   2篇
  1952年   1篇
  1951年   1篇
  1934年   1篇
  1926年   1篇
排序方式: 共有332条查询结果,搜索用时 859 毫秒
101.
We report a capillary-based DNA sequencing read length of 100 bases in 16 min using end-labeled free-solution conjugate electrophoresis (FSCE) with a monodisperse poly-N-substituted glycine (polypeptoid) as a synthetic drag-tag. FSCE enabled rapid separation of single-stranded (ss) DNA sequencing fragments with single-base resolution without the need for a viscous DNA separation matrix. Protein-based drag-tags previously used for FSCE sequencing, for example, streptavidin, are heterogeneous in molar mass (polydisperse); the resultant band-broadening can make it difficult to obtain the single-base resolution necessary for DNA sequencing. In this study, we synthesized and HPLC-purified a 70mer poly-N-(methoxyethyl)glycine (NMEG) drag-tag with a molar mass of - 11 kDa. The NMEG monomers that comprise this peptoid drag-tag are interesting for bioanalytical applications, because the methoxyethyl side chain's chemical structure is reminiscent of the basic monomer unit of polyethylene glycol, a highly biocompatible commercially available polymer, which, however, is not available in monodisperse preparation at an - 11 kDa molar mass. This is the first report of ssDNA separation and of four-color, base-by-base DNA sequencing by FSCE through the use of a chemically synthesized drag-tag. These results show that high-molar mass, chemically synthesized drag-tags based on the polyNMEG structure, if obtained in monodisperse preparation, would serve as ideal drag-tags and could help FSCE reach the commercially relevant read lengths of 100 bases or more.  相似文献   
102.
Next-generation sequencing (NGS) is emerging as a powerful tool for elucidating genetic information for a wide range of applications. Unfortunately, the surging popularity of NGS has not yet been accompanied by an improvement in automated techniques for preparing formatted sequencing libraries. To address this challenge, we have developed a prototype microfluidic system for preparing sequencer-ready DNA libraries for analysis by Illumina sequencing. Our system combines droplet-based digital microfluidic (DMF) sample handling with peripheral modules to create a fully-integrated, sample-in library-out platform. In this report, we use our automated system to prepare NGS libraries from samples of human and bacterial genomic DNA. E. coli libraries prepared on-device from 5 ng of total DNA yielded excellent sequence coverage over the entire bacterial genome, with >99% alignment to the reference genome, even genome coverage, and good quality scores. Furthermore, we produced a de novo assembly on a previously unsequenced multi-drug resistant Klebsiella pneumoniae strain BAA-2146 (KpnNDM). The new method described here is fast, robust, scalable, and automated. Our device for library preparation will assist in the integration of NGS technology into a wide variety of laboratories, including small research laboratories and clinical laboratories.  相似文献   
103.
A role for F-actin in hexokinase-mediated glucose signaling   总被引:3,自引:0,他引:3       下载免费PDF全文
HEXOKINASE1 (HXK1) from Arabidopsis (Arabidopsis thaliana) has dual roles in glucose (Glc) signaling and in Glc phosphorylation. The cellular context, though, for HXK1 function in either process is not well understood. Here we have shown that within normal experimental detection limits, AtHXK1 is localized continuously to mitochondria. Two mitochondrial porin proteins were identified as capable of binding to overexpressed HXK1 protein, both in vivo and in vitro. We also found that AtHXK1 can be associated with its structural homolog, F-actin, based on their coimmunoprecipitation from transgenic plants that overexpress HXK1-FLAG or from transient expression assays, and based on their localization in leaf cells after cryofixation. This association might be functionally important because Glc signaling in protoplast transient expression assays is compromised by disruption of F-actin. We also demonstrate that Glc treatment of Arabidopsis seedlings rapidly and reversibly disrupts fine mesh actin filaments. The possible roles of actin in HXK-dependent Glc signaling are discussed.  相似文献   
104.
Background and Aims: The branch-base xylem structure of the endangered Wollemia nobiliswas anatomically investigated. Wollemia nobilis is probablythe only extant tree species that produces only first-orderbranches and where all branches are cleanly abscised. An investigationwas carried out to see if these unusual features might influencebranch-base xylem structure and water supply to the foliage. Methods: The xylem was sectioned at various distances along the branchbases of 6-year-old saplings. Huber values and relative theoreticalhydraulic conductivities were calculated for various regionsof the branch base. Key Results: The most proximal branch base featured a pronounced xylem constriction.The constriction had only 14–31 % (average 21 %)of the cross-sectional area and 20–42 % (average28 %) of the theoretical hydraulic conductivity of themore distal branch xylem. Wollemia nobilis had extremely lowHuber values for a conifer. Conclusions: The branch-base xylem constriction would appear to facilitatebranch abscission, while the associated Huber values show thatW. nobilis supplies a relatively large leaf area through a relativelysmall diameter ‘pipe’. It is tempting to suggestthat the pronounced decline of W. nobilis in the Tertiary isrelated to its unusual branch-base structure but physiologicalstudies of whole plant conductance are still needed.  相似文献   
105.
Regulating developmental transitions, cell proliferation and cell death through differential gene expression is essential to the ontogeny of all multicellular organisms. Chromatin remodeling is an active process that is necessary for managing the genome-wide suppression of gene activities resulting from DNA compaction. Recent data in plants suggest a general theme, whereby chromatin remodeling complexes containing nuclear actin-related proteins (ARPs) potentiate the activities of crucial regulatory genes involved in plant growth and development, in addition to their basal activities on a much larger set of genes.  相似文献   
106.
107.
UDP-N-acetylglucosamine acyltransferase (LpxA) and UDP-3-O-(acyl)-glucosamine acyltransferase (LpxD) constitute the essential, early acyltransferases of lipid A biosynthesis. Recently, an antimicrobial peptide inhibitor, RJPXD33, was identified with dual affinity for LpxA and LpxD. To gain a fundamental understanding of the molecular basis of inhibitor binding, we determined the crystal structure of LpxA from Escherichia coli in complex with RJPXD33 at 1.9 Å resolutions. Our results suggest that the peptide binds in a unique modality that mimics (R)-β-hydroxyacyl pantetheine binding to LpxA and displays how the peptide binds exclusive of the native substrate, acyl-acyl carrier protein. Acyltransferase binding studies with photo-labile RJPXD33 probes and truncations of RJPXD33 validated the structure and provided fundamental insights for future design of small molecule inhibitors. Overlay of the LpxA-RJPXD33 structure with E. coli LpxD identified a complementary peptide binding pocket within LpxD and serves as a model for further biochemical characterization of RJPXD33 binding to LpxD.  相似文献   
108.
109.
Globally, there are several million individuals with life-threatening invasive fungal diseases such as candidiasis, aspergillosis, cryptococcosis, Pneumocystis pneumonia (PCP), and mucormycosis. The mortality rate for these diseases generally exceeds 40%. Annual medical costs to treat these invasive fungal diseases in the United States exceed several billion dollars. In addition to AIDS patients, the risks of invasive mycoses are increasingly found in immune-impaired individuals or in immunosuppressed patients following stem cell or organ transplant or implantation of medical devices. Current antifungal drug therapies are not meeting the challenge, because (1) at safe doses, they do not provide sufficient fungal clearance to prevent reemergence of infection; (2) most become toxic with extended use; (3) drug-resistant fungal isolates are emerging; and (4) only one new class of antifungal drugs has been approved for clinical use in the last 2 decades. DectiSomes represent a novel design of drug delivery to drastically increase drug efficacy. Antifungals packaged in liposomes are targeted specifically to where the pathogen is, through binding to the fungal cell walls or exopolysaccharide matrices using the carbohydrate recognition domains of pathogen receptors. Relative to untargeted liposomal drug, DectiSomes show order of magnitude increases in the binding to and killing of Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus in vitro and similarly improved efficacy in mouse models of pulmonary aspergillosis. DectiSomes have the potential to usher in a new antifungal drug treatment paradigm.  相似文献   
110.
AbstractWe applied modern molecular and functional imaging to the pretreatment assessment of lung cancer using combined dynamic contrast-enhanced computed tomography (DCE-CT) and 18F-fluorodeoxyglucose-positron emission tomography (18F-FDG-PET) to phenotype tumors. Seventy-four lung cancer patients were prospectively recruited for 18F-FDG-PET/DCE-CT using PET/64-detector CT. After technical failures, there were 64 patients (35 males, 29 females; mean age [± SD] 67.5 ± 7.9 years). DCE-CT yielded tumor peak enhancement (PE) and standardized perfusion value (SPV). The uptake of 18F-FDG quantified on PET as the standardized uptake value (SUVmax) assessed tumor metabolism. The median values for SUVmax and SPV were used to define four vascular-metabolic phenotypes. There were associations (Spearman rank correlation [rs]) between tumor size and vascular-metabolic parameters: SUVmax versus size (rs = .40, p = .001) and SUV/PE versus size (r = .43, p < .001). Patients with earlier-stage (I-IIA, n = 30) disease had mean (± SD) SUV/PE 0.36 ± 0.28 versus 0.56 ± 0.32 in later-stage (stage IIB-IV, n = 34) disease (p = .007). The low metabolism with high vascularity phenotype was significantly more common among adenocarcinomas (p = .018), whereas the high metabolism with high vascularity phenotype was more common among squamous cell carcinomas (p = .024). Other non-small cell lung carcinoma tumor types demonstrated a high prevalence of the high metabolism with low vascularity phenotype (p = .028). We show that tumor subtypes have different vascular-metabolic associations, which can be helpful clinically in managing lung cancer patients to hone targeted therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号