首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   24篇
  国内免费   1篇
  2020年   6篇
  2019年   5篇
  2018年   4篇
  2016年   7篇
  2015年   8篇
  2013年   7篇
  2012年   15篇
  2011年   17篇
  2010年   10篇
  2009年   8篇
  2008年   14篇
  2007年   12篇
  2006年   16篇
  2005年   9篇
  2004年   7篇
  2003年   12篇
  2002年   14篇
  2001年   15篇
  2000年   10篇
  1999年   10篇
  1998年   6篇
  1996年   4篇
  1994年   4篇
  1993年   2篇
  1992年   7篇
  1991年   4篇
  1990年   3篇
  1989年   7篇
  1988年   5篇
  1987年   4篇
  1986年   5篇
  1985年   7篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   7篇
  1980年   6篇
  1979年   7篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1967年   2篇
  1952年   2篇
  1948年   2篇
排序方式: 共有335条查询结果,搜索用时 234 毫秒
31.
A study of the oxidation of a series of guanidines related to L-arginine (L-Arg) and of various alkyl- and arylguanidines, by recombinant NO-synthase II (NOS II), led us to the discovery of the first non-alpha-amino acid guanidine substrate of NOS, acting as an efficient NO precursor. This compound, 3-(trifluoromethyl)propylguanidine, 4, led to a rate of NO formation (k(cat) = 220 +/- 50 min(-1)) only 2 times lower than that of L-Arg. Formation of 1 mol of NO upon NOS II-catalyzed oxidation of 4 occurred with consumption of 2.9 mol of NADPH, which corresponds to a 52% coupling between electron transfer and oxygenation of its guanidine function. Its oxidation by activated mouse macrophages in an L-Arg-free medium resulted in NO(2)(-) formation that was inhibited by classical NOS inhibitors with a rate only 2-3 times lower than that observed with L-Arg itself. These results open the way toward the research of selective, stable guanidine substrates of NOS that could be interesting, new NO donors after in situ oxidation by a given NOS isoform.  相似文献   
32.
33.
34.
So far six susceptibility loci for renal cell carcinoma (RCC) have been discovered by genome-wide association studies (GWAS). To identify additional RCC common risk loci, we performed a meta-analysis of published GWAS (totalling 2,215 cases and 8,566 controls of Western-European background) with imputation using 1000 Genomes Project and UK10K Project data as reference panels and followed up the most significant association signals [22 single nucleotide polymorphisms (SNPs) and 3 indels in eight genomic regions] in 383 cases and 2,189 controls from The Cancer Genome Atlas (TCGA). A combined analysis identified a promising susceptibility locus mapping to 1q24.1 marked by the imputed SNP rs3845536 (P combined =2.30x10-8). Specifically, the signal maps to intron 4 of the ALDH9A1 gene (aldehyde dehydrogenase 9 family, member A1). We further evaluated this potential signal in 2,461 cases and 5,081 controls from the International Agency for Research on Cancer (IARC) GWAS of RCC cases and controls from multiple European regions. In contrast to earlier findings no association was shown in the IARC series (P=0.94; P combined =2.73x10-5). While variation at 1q24.1 represents a potential risk locus for RCC, future replication analyses are required to substantiate our observation.  相似文献   
35.
As a critical component in the PI3K/AKT/mTOR pathway, AKT has become an attractive target for therapeutic intervention. ARQ 092 and a next generation AKT inhibitor, ARQ 751 are selective, allosteric, pan-AKT and AKT1-E17K mutant inhibitors that potently inhibit phosphorylation of AKT. Biochemical and cellular analysis showed that ARQ 092 and ARQ 751 inhibited AKT activation not only by dephosphorylating the membrane-associated active form, but also by preventing the inactive form from localizing into plasma membrane. In endometrial PDX models harboring mutant AKT1-E17K and other tumor models with an activated AKT pathway, both compounds exhibited strong anti-tumor activity. Combination studies conducted in in vivo breast tumor models demonstrated that ARQ 092 enhanced tumor inhibition of a common chemotherapeutic agent (paclitaxel). In a large panel of diverse cancer cell lines, ARQ 092 and ARQ 751 inhibited proliferation across multiple tumor types but were most potent in leukemia, breast, endometrial, and colorectal cancer cell lines. Moreover, inhibition by ARQ 092 and ARQ 751 was more prevalent in cancer cell lines containing PIK3CA/PIK3R1 mutations compared to those with wt-PIK3CA/PIK3R1 or PTEN mutations. For both ARQ 092 and ARQ 751, PIK3CA/PIK3R1 and AKT1-E17K mutations can potentially be used as predictive biomarkers for patient selection in clinical studies.  相似文献   
36.
Magnetic resonance imaging (MRI) has long been used clinically and experimentally as a diagnostic tool to obtain three-dimensional, high-resolution images of deep tissues. These images are enhanced by the administration of contrast agents such as paramagnetic Gd(III) complexes. Herein, we describe the preparation of a series of multimodal imaging agents in which paramagnetic Gd(III) complexes are conjugated to a fluorescent tetrapyrrole, namely, a porphyrazine (pz). Zinc metalated pzs conjugated to one, four, or eight paramagnetic Gd(III) complexes are reported. Among these conjugates, Zn-Pz-8Gd(III) exhibits an ionic relaxivity four times that of the monomeric Gd(III) agent, presumably because of increased molecular weight and a molecular relaxivity that is approximately thirty times larger, while retaining the intense electronic absorption and emission of the unmodified pz. Unlike current clinical MR agents, Zn-Pz-1Gd(III) is taken up by cells. This probe demonstrates intracellular fluorescence by confocal microscopy and provides significant contrast enhancement in MR images, as well as marked phototoxicity in assays of cellular viability. These results suggest that pz agents possess a new potential for use in cancer imaging by both MRI and near-infrared (NIR) fluorescence, while acting as a platform for photodynamic therapy.  相似文献   
37.
We have determined the linear dynamic range in signal detection by Fluorescent Differential Display (FDD) using conditionally induced mRNA expression of the p53 tumor-suppressor gene as a control. By serial spiking of p53-induced RNA into that of non-induced RNA, we were able to quantitatively measure up to 100-fold change in p53 mRNA expression level. The linear dynamic range of signal detection per mRNA message was determined to be from 1000 up to 20,000 in fluorescence signal, in which the signals for the majority of mRNAs reside. Thus, FDD can be used to accurately quantify differences in mRNA expression among eukaryotic cells.  相似文献   
38.
39.
Progesterone receptor (PR) is strongly associated with disease prognosis and therapeutic efficacy in hormone-related diseases such as endometriosis and breast, ovarian, and uterine cancers. Receptor status is currently determined by immunohistochemistry assays. However, noninvasive PR imaging agents could improve disease detection and help elucidate pathological molecular pathways, leading to new therapies and animal disease models. A series of water-soluble PR-targeted magnetic resonance imaging (MRI) probes were synthesized using Cu(I)-catalyzed click chemistry and evaluated in vitro and in vivo. These agents demonstrated activation of PR in vitro and preferential accumulation in PR(+) compared to PR(-) human breast cancer cells with low toxicity. In xenograft tumor models, the agents demonstrated enhanced signal intensity in PR(+) tumors compared to PR(-) tumors. The results suggest that these agents may be promising MRI probes for PR(+) diseases.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号