首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   547篇
  免费   57篇
  国内免费   15篇
  2023年   5篇
  2022年   4篇
  2021年   15篇
  2020年   9篇
  2019年   6篇
  2018年   14篇
  2017年   12篇
  2016年   15篇
  2015年   16篇
  2014年   25篇
  2013年   27篇
  2012年   47篇
  2011年   33篇
  2010年   21篇
  2009年   21篇
  2008年   21篇
  2007年   28篇
  2006年   18篇
  2005年   28篇
  2004年   12篇
  2003年   16篇
  2002年   19篇
  2001年   13篇
  2000年   14篇
  1999年   12篇
  1998年   12篇
  1997年   11篇
  1996年   7篇
  1995年   7篇
  1994年   3篇
  1993年   8篇
  1992年   4篇
  1991年   3篇
  1990年   7篇
  1989年   7篇
  1988年   5篇
  1987年   8篇
  1986年   6篇
  1985年   6篇
  1984年   4篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1978年   7篇
  1977年   8篇
  1973年   3篇
  1971年   3篇
  1969年   3篇
  1966年   3篇
  1935年   2篇
排序方式: 共有619条查询结果,搜索用时 20 毫秒
51.
The genetic basis of inbreeding avoidance in house mice   总被引:8,自引:0,他引:8  
Animals might be able to use highly polymorphic genetic markers to recognize very close relatives and avoid inbreeding. The major histocompatibility complex (MHC) is thought to provide such a marker because it influences individual scent in a broad range of vertebrates. However, direct evidence is very limited. In house mice (Mus musculus domesticus), the major urinary protein (MUP) gene cluster provides another highly polymorphic scent signal of genetic identity that could underlie kin recognition. We demonstrate that wild mice breeding freely in seminatural enclosures show no avoidance of mates with the same MHC genotype when genome-wide similarity is controlled. Instead, inbreeding avoidance is fully explained by a strong deficit in successful matings between mice sharing both MUP haplotypes. Single haplotype sharing is not a good guide to the identification of full sibs, and there was no evidence of behavioral imprinting on maternal MHC or MUP haplotypes. This study, the first to examine wild animals with normal variation in MHC, MUP, and genetic background, demonstrates that mice use self-referent matching of a species-specific polymorphic signal to avoid inbreeding. Recognition of close kin as unsuitable mates might be more variable across species than a generic vertebrate-wide ability to avoid inbreeding based on MHC.  相似文献   
52.
The amino terminal domain of collagen type XI alpha1 chain is a noncollagenous structure that is essential for the regulation of fibrillogenesis in developing cartilage. The amino terminal domain is alternatively spliced at the mRNA level, resulting in proteins expressed as splice variants. These splice variants, or isoforms, have unique distribution in growing tissues, alluding to distinct roles in development. We report here a rapid and straightforward method for expression, purification and in vitro folding of recombinant collagen XI isoforms alpha1(XI) NTD[p7] and alpha1(XI) NTD[p6b+7]. The recombinant isoforms were expressed in Escherichia coli as bacterial inclusion bodies. Unfolded carboxy terminal polyhistidine tagged proteins were purified via nickel affinity chromatography and refolded with specific protocols optimized for each isoform. Purity was assessed by SDS-PAGE and correct secondary structure by a comparison of circular dichroism data with that obtained for Npp. Protein expression and purification of the recombinant collagen XI splice variants will allow further studies to elucidate the structure and molecular interactions with components of the extracellular matrix. This research will clarify the mechanism of collagen XI mediated regulation of collagen fibrillogenesis.  相似文献   
53.
Exposure of murine skin to tumor-promoting agents such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA) causes up-regulation of cyclooxygenase-2 (COX-2) and increased prostaglandin (PG) synthesis. Pharmacological inhibition of COX-2 significantly reduces skin tumor development. However, we previously demonstrated that K14.COX-2 transgenic (TG) mice that overexpressed COX-2 in the epidermis were unexpectedly resistant to tumor development under the classical 7,12-dimethylbenz[a]anthracene-TPA protocol. In the present study, we employed a proteomic approach of 2-dimensional gel electrophoresis (2-DE) and mass spectrometry to profile differentially expressed proteins in the epidermis of K14.COX-2 TG and wild-type control mice. Various 2-DE approaches were used to identify the maximum number of differentially expressed proteins: 20 for untreated samples, 3 for acetone-treated samples, and 22 for TPA-treated samples. These proteins include 14-3-3 sigma, numerous actin fragments, actin filament related proteins cofilin-1 and destrin, galectin-3, galectin-7, prohibitin, S100A6, S100A9, and many others. The differential expression of galectin-3, galectin-7, S100A9 was validated by Western blot analysis and/or immunohistochemical analysis. The current data suggest that some of the differentially expressed proteins might increase apoptosis and cell cycle arrest, which, in turn, may provide insight into the role of COX-2 in skin tumorigenesis.  相似文献   
54.
In mammalian nucleotide excision repair, the DDB1–DDB2 complex recognizes UV-induced DNA photolesions and facilitates recruitment of the XPC complex. Upon binding to damaged DNA, the Cullin 4 ubiquitin ligase associated with DDB1–DDB2 is activated and ubiquitinates DDB2 and XPC. The structurally disordered N-terminal tail of DDB2 contains seven lysines identified as major sites for ubiquitination that target the protein for proteasomal degradation; however, the precise biological functions of these modifications remained unknown. By exogenous expression of mutant DDB2 proteins in normal human fibroblasts, here we show that the N-terminal tail of DDB2 is involved in regulation of cellular responses to UV. By striking contrast with behaviors of exogenous DDB2, the endogenous DDB2 protein was stabilized even after UV irradiation as a function of the XPC expression level. Furthermore, XPC competitively suppressed ubiquitination of DDB2 in vitro, and this effect was significantly promoted by centrin-2, which augments the DNA damage-recognition activity of XPC. Based on these findings, we propose that in cells exposed to UV, DDB2 is protected by XPC from ubiquitination and degradation in a stochastic manner; thus XPC allows DDB2 to initiate multiple rounds of repair events, thereby contributing to the persistence of cellular DNA repair capacity.  相似文献   
55.
56.

Background

Vitamin D is associated with lung function in cross-sectional studies, and vitamin D inadequacy is hypothesized to play a role in the pathogenesis of chronic obstructive pulmonary disease. Further data are needed to clarify the relation between vitamin D status, genetic variation in vitamin D metabolic genes, and cross-sectional and longitudinal changes in lung function in healthy adults.

Methods

We estimated the association between serum 25-hydroxyvitamin D [25(OH)D] and cross-sectional forced expiratory volume in the first second (FEV1) in Framingham Heart Study (FHS) Offspring and Third Generation participants and the association between serum 25(OH)D and longitudinal change in FEV1 in Third Generation participants using linear mixed-effects models. Using a gene-based approach, we investigated the association between 241 SNPs in 6 select vitamin D metabolic genes in relation to longitudinal change in FEV1 in Offspring participants and pursued replication of these findings in a meta-analyzed set of 4 independent cohorts.

Results

We found a positive cross-sectional association between 25(OH)D and FEV1 in FHS Offspring and Third Generation participants (P = 0.004). There was little or no association between 25(OH)D and longitudinal change in FEV1 in Third Generation participants (P = 0.97). In Offspring participants, the CYP2R1 gene, hypothesized to influence usual serum 25(OH)D status, was associated with longitudinal change in FEV1 (gene-based P < 0.05). The most significantly associated SNP from CYP2R1 had a consistent direction of association with FEV1 in the meta-analyzed set of replication cohorts, but the association did not reach statistical significance thresholds (P = 0.09).

Conclusions

Serum 25(OH)D status was associated with cross-sectional FEV1, but not longitudinal change in FEV1. The inconsistent associations may be driven by differences in the groups studied. CYP2R1 demonstrated a gene-based association with longitudinal change in FEV1 and is a promising candidate gene for further studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0238-y) contains supplementary material, which is available to authorized users.  相似文献   
57.
58.
Hwang H  Vreven T  Whitfield TW  Wiehe K  Weng Z 《Proteins》2011,79(8):2467-2474
Proteins often undergo conformational changes when binding to each other. A major fraction of backbone conformational changes involves motion on the protein surface, particularly in loops. Accounting for the motion of protein surface loops represents a challenge for protein-protein docking algorithms. A first step in addressing this challenge is to distinguish protein surface loops that are likely to undergo backbone conformational changes upon protein-protein binding (mobile loops) from those that are not (stationary loops). In this study, we developed a machine learning strategy based on support vector machines (SVMs). Our SVM uses three features of loop residues in the unbound protein structures-Ramachandran angles, crystallographic B-factors, and relative accessible surface area-to distinguish mobile loops from stationary ones. This method yields an average prediction accuracy of 75.3% compared with a random prediction accuracy of 50%, and an average of 0.79 area under the receiver operating characteristic (ROC) curve using cross-validation. Testing the method on an independent dataset, we obtained a prediction accuracy of 70.5%. Finally, we applied the method to 11 complexes that involve members from the Ras superfamily and achieved prediction accuracy of 92.8% for the Ras superfamily proteins and 74.4% for their binding partners.  相似文献   
59.

Background

Patients with epilepsy often suffer from other important conditions. The existence of such co-morbidities is frequently not recognized and their relationship with epilepsy usually remains unexplained.

Methodology/Principal Findings

We describe three patients with common, sporadic, non-syndromic epilepsies in whom large genomic microdeletions were found during a study of genetic susceptibility to epilepsy. We performed detailed gene-driven clinical investigations in each patient. Disruption of the function of genes in the deleted regions can explain co-morbidities in these patients.

Conclusions/Significance

Co-morbidities in patients with epilepsy can be part of a genomic abnormality even in the absence of (known) congenital malformations or intellectual disabilities. Gene-driven phenotype examination can also reveal clinically significant unsuspected condition.  相似文献   
60.

Background

Short rotation coppice willow is a potential lignocellulosic feedstock in the United Kingdom and elsewhere; however, research on optimising willow specifically for bioethanol production has started developing only recently. We have used the feedstock Salix viminalis × Salix schwerinii cultivar 'Olof' in a three-month pot experiment with the aim of modifying cell wall composition and structure within the stem to the benefit of bioethanol production. Trees were treated for 26 or 43 days with tension wood induction and/or with an application of the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile that is specific to secondary cell walls. Reaction wood (tension and opposite wood) was isolated from material that had received the 43-day tension wood induction treatment.

Results

Glucan content, lignin content and enzymatically released glucose were assayed. All measured parameters were altered without loss of total stem biomass yield, indicating that enzymatic saccharification yield can be enhanced by both alterations to cell wall structure and alterations to absolute contents of either glucan or lignin.

Conclusions

Final glucose yields can be improved by the induction of tension wood without a detrimental impact on biomass yield. The increase in glucan accessibility to cell wall degrading enzymes could help contribute to reducing the energy and environmental impacts of the lignocellulosic bioethanol production process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号