首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   12篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   12篇
  2012年   8篇
  2011年   7篇
  2010年   9篇
  2009年   4篇
  2007年   3篇
  2006年   5篇
  2005年   4篇
  2003年   3篇
  1998年   4篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1962年   1篇
  1960年   1篇
  1959年   1篇
  1957年   2篇
  1955年   1篇
  1954年   1篇
  1953年   1篇
  1952年   1篇
  1947年   2篇
  1943年   1篇
  1936年   1篇
  1935年   1篇
  1934年   1篇
  1931年   1篇
  1929年   1篇
  1927年   2篇
  1913年   1篇
  1912年   1篇
  1910年   1篇
  1909年   1篇
  1908年   1篇
排序方式: 共有128条查询结果,搜索用时 203 毫秒
21.
The mechanisms of action of extracellular mitogens for normal human bronchial epithelial cells (NHBE) were investigated by observing their effects on selected biochemical pathways when the cells were incubated in serum-free media. We find that (a) epidermal growth factor (EGF) stimulates ornithine decarboxylase (ODC) activity and the rate of cell division without stimulating cAMP; (b) alone, pituitary extract (PEX) does not stimulate ODC activity, cAMP levels, or cell division; (c) when PEX is added to medium containing EGF there is a further increase in both ODC activity and the rate of cell division, again with no increase in cAMP levels; (d) in contrast, alone, L-epinephrine (EPI) stimulates an increase in both ODC and cAMP but does not stimulate cell division; (e) when EPI is added to medium containing both EGF and PEX a further increase in the rate of cell division is noted; (f) the specific inhibitor of ODC, alpha-(difluoromethyl)-ornithine (DMFO), also inhibits NHBE cell proliferation; and (g) the beta-adrenergic receptor antagonist propranolol inhibits the mitogenic action and ODC induction by EPI observed under condition e. We conclude that an increase in ODC activity is necessary but not sufficient for an increase in proliferation of NHBE cells. In contrast, cAMP stimulation is not necessary for an increase in NHBE cell division. However, in the presence of undefined factors in PEX, increases in cAMP levels result in a synergistic increase in the rate of EGF-stimulated clonal growth. By correlating the biochemical pathways invoked by EGF, PEX, EPI, and combinations thereof with their mitogenic actions, we have better defined the role each of these different mitogens plays in stimulating epithelial cell division.  相似文献   
22.
The retinoblastoma (RB) tumor suppressor pathway is disrupted at high frequency in hepatocellular carcinoma. However, the mechanisms through which RB modulates physiological responses in the liver remain poorly defined. Despite the well established role of RB in cell cycle control, the deletion of RB had no impact on the kinetics of cell cycle entry or the restoration of quiescence during the course of liver regeneration. Although these findings indicated compensatory effects from the RB-related proteins p107 and p130, even the dual deletion of RB with p107 or p130 failed to deregulate hepatic proliferation. Furthermore, although these findings suggested a modest role for the RB-pathway in the context of proliferative control, RB loss had striking effects on response to the genotoxic hepatocarcinogen diethylnitrosamine. With diethylnitrosamine, RB deletion resulted in inappropriate cell cycle entry that facilitated secondary genetic damage and further uncoupling of DNA replication with mitotic entry. Analysis of the mechanism underlying the differential impact of RB status on liver biology revealed that, while liver regeneration is associated with the conventional induction of cyclin D1 expression, the RB-dependent cell cycle entry, occurring with diethylnitrosamine treatment, was independent of cyclin D1 levels and associated with the specific induction of E2F1. Combined, these studies demonstrate that RB loss has disparate effects on the response to unique tumorigenic stresses, which is reflective of distinct mechanisms of cell cycle entry.  相似文献   
23.
24.
25.
Exposure of mice to UVB radiation produces a highly selective, systemic immunosuppression associated with the appearance of suppressor T lymphocytes. Suppression of delayed hypersensitivity to hapten-coupled syngeneic cells has been shown to result from an altered distribution of antigen-presenting cells. The purpose of this study was to determine whether an alteration in the activity of antigen-presenting cells could account for the systemic suppression of contact hypersensitivity (CHS) by UVB radiation. Fluorescein isothiocyanate (FITC) was used for contact sensitization because it uses different antigen-presenting cells than does oxazolone to induce CHS. Our previous studies demonstrated that CHS to oxazolone was suppressed by UVB irradiation. In these studies, we show that exposure of mice to UVB radiation before epicutaneous application of FITC onto unirradiated skin markedly decreased the CHS response to FITC painted on unexposed ears. Cyclophosphamide-sensitive suppressor T cells were detectable in the spleens of mice exhibiting decreased CHS. The antigen-presenting activity of cells in lymph nodes draining the site of epicutaneous sensitization (DLN cells) was assessed by injecting them into the hind footpads of syngeneic recipients and measuring the CHS response to FITC 6 days later. Viable DLN cells from UVB-irradiated, FITC-sensitized mice were equal to those from unirradiated, FITC-sensitized mice in their ability to induce CHS in normal recipients. No sensitization resulted when killed DLN cells were used for immunization, indicating that sensitization was not caused by reprocessing of antigen by host cells. We conclude that impairment of the CHS reaction in UVB-irradiated mice does not appear to be blocked at an initial step of antigen uptake, processing, or presentation, but must be impaired at some other step in the immunologic pathway.  相似文献   
26.
Low-magnification photographs of glabrous upper surfaces using white light show that no matter whether the visual appearance is shiny or matte, the outer cuticles are specularly reflective. In all cases, the individual epidermal cells are seen as bright spots of reflected light, due to their convex outer surfaces. This shows that at least some of the apparently diffuse reflection from leaves is specularly reflected from the outer surface. Quantitative data were obtained for both upper and lower surfaces of a variety of leaves, using light of 632.8 nm incident at 60° from the normal. Light departing the leaf was detected in two directions: normal to the leaf (“diffuse”), and at 60° (“specular”), and compared with the reflection from a standard white block. By this criterion, some leaves were quite shiny, confirming the visual impression, but others were not. In only two cases did the “diffuse” reflection exceed the “specular” (as would be expected from a true diffuse reflector); these were leaves with thick coatings of hairs. Less than 10% of the incident light is reflected by the cuticle of a glabrous leaf.  相似文献   
27.
The rate of hydrolysis of oligomers by the endopolygalacturonase of yeast is in the order: heptamer > hexamer > pentamer > tetramer. This suggests that the active site accommodates at least 7 units. Since the heptamer disappears concurrently with the bulk of larger oligomers, the maximum number of units appears to be 7. The release of labelled (unsaturated, or 3H labelled and reduced) end units from larger substrate is interpreted to indicate that the enzyme interacts with 3 saccharide units toward the reducing end from the bond to be broken, and with 4 units toward the non-reducing end. The relative affinities for the enzyme of saccharide units in various positions are unequal, as indicated by the very low relative rate of monomer production from the hydrolysis of hexamer and pentamer, and the apparently unequal probability of two other modes of hexamer hydrolysis [(tetramer + dimer) = 2.5 (trimer + trimer)].  相似文献   
28.
29.

Background

Highly pathogenic avian influenza (HPAI) H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease.

Aim

To study influenza A (H5N1) virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease.

Methods

We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces.

Results

We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our data suggests that viremia, secondary to, for example, gastro-intestinal infection, can potentially lead to infection of the lung. HPAI H5N1 virus was a more potent inducer of cytokines (e.g. IP-10, RANTES, IL-6) in comparison to H1N1 virus in alveolar epithelial cells, and these virus-induced chemokines were secreted onto both the apical and basolateral aspects of the polarized alveolar epithelium.

Conclusion

The predilection of viruses for different routes of entry and egress from the infected cell is important in understanding the pathogenesis of influenza H5N1 infection and may help unravel the pathogenesis of human H5N1 disease.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号