首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   556篇
  免费   104篇
  2021年   8篇
  2019年   5篇
  2017年   7篇
  2016年   8篇
  2015年   14篇
  2014年   23篇
  2013年   19篇
  2012年   13篇
  2011年   24篇
  2010年   19篇
  2009年   15篇
  2008年   13篇
  2007年   14篇
  2006年   15篇
  2005年   21篇
  2004年   16篇
  2003年   18篇
  2002年   21篇
  2001年   13篇
  2000年   13篇
  1999年   13篇
  1998年   17篇
  1997年   17篇
  1996年   17篇
  1995年   13篇
  1994年   9篇
  1993年   11篇
  1992年   12篇
  1991年   18篇
  1990年   15篇
  1989年   12篇
  1988年   11篇
  1987年   6篇
  1986年   8篇
  1985年   19篇
  1984年   12篇
  1983年   15篇
  1982年   12篇
  1981年   7篇
  1979年   8篇
  1978年   7篇
  1977年   11篇
  1976年   15篇
  1975年   8篇
  1974年   9篇
  1973年   7篇
  1972年   11篇
  1971年   5篇
  1970年   6篇
  1969年   5篇
排序方式: 共有660条查询结果,搜索用时 390 毫秒
91.
Interspecific chromosome substitution is among the most powerful means of introgression and steps toward quantitative trait locus (QTL) identification. By reducing the genetic "noise" from other chromosomes, it greatly empowers the detection of genetic effects by specific chromosomes on quantitative traits. Here, we report on such results for 14 cotton lines (CS-B) with specific chromosomes or chromosome arms from G. barbadense L. substituted into G. hirsutum and chromosome-specific F2 families. Boll size, lint percentage, micronaire, 2.5% span length, elongation, strength, and yield were measured by replicated field experiments in five diverse environments and analyzed under an additive-dominance (AD) genetic model with genotype and environment interaction. Additive effects were significant for all traits and dominance effects were significant for all traits except 2.5% span length. CS-B25 had additive effects increasing fiber strength and fiber length and decreasing micronaire. CS-B16 and CS-B18 had additive effects related to reduced yields. The results point toward specific chromosomes of G. barbadense 3-79 as the probable locations of the genes that significantly affect quantitative traits of importance. Our results provided a scope to analyze individual chromosomes of the genome in homozygous and heterozygous conditions and thus detected novel effects of alleles controlling important QTL.  相似文献   
92.

Background  

Tenascins are a family of glycoproteins found primarily in the extracellular matrix of embryos where they help to regulate cell proliferation, adhesion and migration. In order to learn more about their origins and relationships to each other, as well as to clarify the nomenclature used to describe them, the tenascin genes of the urochordate Ciona intestinalis, the pufferfish Tetraodon nigroviridis and Takifugu rubripes and the frog Xenopus tropicalis were identified and their gene organization and predicted protein products compared with the previously characterized tenascins of amniotes.  相似文献   
93.
Arginine 352 (R352) in the sixth transmembrane domain of the cystic fibrosis transmembrane conductance regulator (CFTR) previously was reported to form an anion/cation selectivity filter and to provide positive charge in the intracellular vestibule. However, mutations at this site have nonspecific effects, such as inducing susceptibility of endogenous cysteines to chemical modification. We hypothesized that R352 stabilizes channel structure and that charge-destroying mutations at this site disrupt pore architecture, with multiple consequences. We tested the effects of mutations at R352 on conductance, anion selectivity and block by the sulfonylurea drug glipizide, using recordings of wild-type and mutant channels. Charge-altering mutations at R352 destabilized the open state and altered both selectivity and block. In contrast, R352K-CFTR was similar to wild-type. Full conductance state amplitude was similar to that of wild-type CFTR in all mutants except R352E, suggesting that R352 does not itself form an anion coordination site. In an attempt to identify an acidic residue that may interact with R352, we found that permeation properties were similarly affected by charge-reversing mutations at D993. Wild-type-like properties were rescued in R352E/D993R-CFTR, suggesting that R352 and D993 in the wild-type channel may interact to stabilize pore architecture. Finally, R352A-CFTR was sensitive to modification by externally applied MTSEA+, while wild-type and R352E/D993R-CFTR were not. These data suggest that R352 plays an important structural role in CFTR, perhaps reflecting its involvement in forming a salt bridge with residue D993.  相似文献   
94.
95.
TAR DNA-binding protein-43 (TDP-43) is a highly conserved, ubiquitously expressed nuclear protein that was recently identified as the disease protein in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Pathogenic TDP-43 gene (TARDBP) mutations have been identified in familial ALS kindreds, and here we report a TARDBP variant (A90V) in a FTLD/ALS patient with a family history of dementia. Significantly, A90V is located between the bipartite nuclear localization signal sequence of TDP-43 and the in vitro expression of TDP-43-A90V led to its sequestration with endogenous TDP-43 as insoluble cytoplasmic aggregates. Thus, A90V may be a genetic risk factor for FTLD/ALS because it predisposes nuclear TDP-43 to redistribute to the cytoplasm and form pathological aggregates.  相似文献   
96.
97.
Two highly conserved amino acid residues, an arginine and a glutamine, located near the C-terminal end of the gamma subunit, form a "catch" by hydrogen bonding with residues in an anionic loop on one of the three catalytic beta subunits of the bovine mitochondrial F1-ATPase [Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628]. The catch is considered to play a critical role in the binding change mechanism whereby binding of ATP to one catalytic site releases the catch and induces a partial rotation of the gamma subunit. This role is supported by the observation that mutation of the equivalent arginine and glutamine residues in the Escherichia coli F1 gamma subunit drastically reduced all ATP-dependent catalytic activities of the enzyme [Greene, M. D., and Frasch, W. D. (2003) J. Biol. Chem. 278, 5194-5198]. In this study, we show that simultaneous substitution of the equivalent residues in the chloroplast F1 gamma subunit, arginine 304 and glutamine 305, with alanine decreased the level of proton-coupled ATP synthesis by more than 80%. Both the Mg2+-dependent and Ca2+-dependent ATP hydrolysis activities increased by more than 3-fold as a result of these mutations; however, the sulfite-stimulated activity decreased by more than 60%. The Mg2+-dependent, but not the Ca2+-dependent, ATPase activity of the double mutant was insensitive to inhibition by the phytotoxic inhibitor tentoxin, indicating selective loss of catalytic cooperativity in the presence of Mg2+ ions. The results indicate that the catch residues are required for efficient proton coupling and for activation of multisite catalysis when MgATP is the substrate. The catch is not, however, required for CaATP-driven multisite catalysis or, therefore, for rotation of the gamma subunit.  相似文献   
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号