首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   30篇
  2021年   4篇
  2019年   1篇
  2018年   2篇
  2016年   5篇
  2015年   6篇
  2014年   2篇
  2012年   8篇
  2011年   7篇
  2010年   3篇
  2009年   9篇
  2008年   5篇
  2007年   5篇
  2006年   11篇
  2005年   5篇
  2004年   4篇
  2003年   12篇
  2002年   5篇
  2001年   8篇
  2000年   15篇
  1999年   6篇
  1998年   7篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1976年   1篇
  1975年   1篇
  1966年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
51.
The relationship between the susceptibility of photosystem II (PSII) to photoinhibition in vivo and the rate of degradation of the D1 protein of the PSII reaction center heterodimer was investigated in leaves from pea plants (Pisum sativum L. cv Greenfeast) grown under widely contrasting irradiances. There was an inverse linear relationship between the extent of photoinhibition and chlorophyll (Chl) a/b ratios, with low-light leaves being more susceptible to high light. In the presence of the chloroplast-encoded protein synthesis inhibitor lincomycin, the differential sensitivity of the various light-acclimated pea leaves to photoinhibition was largely removed, demonstrating the importance of D1 protein turnover as the most crucial mechanism to protect against photoinhibition. In the differently light-acclimated pea leaves, the rate of D1 protein degradation (measured from [35S]methionine pulse-chase experiments) increased with increasing incident light intensities only if the light was not high enough to cause photoinhibition in vivo. Under moderate illumination, the rate constant for D1 protein degradation corresponded to the rate constant for photoinhibition in the presence of lincomycin, demonstrating a balance between photodamage to D1 protein and subsequent recovery, via D1 protein degradation, de novo synthesis of precursor D1 protein, and reassembly of functional PSII. In marked contrast, in light sufficiently high to cause photoinhibition in vivo, the rate of D1 protein degradation no longer increased concomitantly with increasing photoinhibition, suggesting that the rate of D1 protein degradation is playing a regulatory role. The extent of thylakoid stacking, indicated by the Chl a/b ratios of the differently light-acclimated pea leaves, was linearly related to the half-life of the D1 protein in strong light. We conclude that photoinhibition in vivo occurs under conditions in which the rate of D1 protein degradation can no longer be enhanced to rapidly remove irreversibly damaged D1 protein. We suggest that low-light pea leaves, with more stacked membranes and less stroma-exposed thylakoids, are more susceptible to photoinhibition in vivo mainly due to their slower rate of D1 protein degradation under sustained high light and their slower repair cycle of the photodamaged PSII centers.  相似文献   
52.
The folding of nascent secretory and membrane proteins is monitored by the endoplasmic reticulum (ER) quality control system. Misfolded proteins are retained in the ER and can be removed by ER-associated degradation. As a model for the ER quality control of multispanning membrane proteins in yeast, we have been studying mutant forms of Ste6p. Here, we identify mislocalized mutant forms of Ste6p that induce the formation of, and localize to, prominent structures that are absent in normal cells. We have named these structures ER-associated compartments (ERACs), based on their juxtaposition to and connection with the ER, as observed by fluorescence and electron microscopy. ERACs comprise a network of tubulo-vesicular structures that seem to represent proliferated ER membranes. Resident ER lumenal and membrane proteins are present in ERACs in addition to their normal ER localization, suggesting there is no barrier for their entry into ERACs. However, the forms of Ste6p in ERACs are excluded from the ER and do not enter the secretory pathway; instead, they are ultimately targeted for ER-associated degradation. The presence of ERACs does not adversely affect secretory protein traffic through the ER and does not lead to induction of the unfolded protein response. We propose that ERACs may be holding sites to which misfolded membrane proteins are specifically diverted so as not to interfere with normal cellular functions. We discuss the likelihood that related ER membrane proliferations that form in response to certain other mutant or unassembled membrane proteins may be substantially similar to ERACs.  相似文献   
53.
Dynamic expression patterns of four retinoid-metabolizing enzymes create rapidly changing retinoic acid (RA) patterns in the emerging eye anlage of the mouse. First, a RA-rich ventral zone is set up, then a RA-poor dorsal zone, and finally a tripartite organization consisting of dorsal and ventral RA-rich zones separated by a horizontal RA-poor stripe. This subdivision of the retina into three RA concentration zones is directly visible as beta-galactosidase labeling patterns in retinas of RA-reporter mice. Because the axons of retinal ganglion cells transport the reporter product anterogradely, the central projections from dorsal and ventral retina can be visualized as two heavily labeled axon bundles. Comparisons of the axonal labeling with physiologic recordings of visual topography in the adult mouse show that the labeled axons represent the upper and the lower visual fields. The RA-poor stripe develops into a broad horizontal zone of higher visual acuity. Comparisons of the retina labeling with eye-muscle insertions show that the axis of the RA pattern lines up with the dorsoventral axis of the oculomotor system. These observations indicate that the dorsoventral axis of the embryonic eye anlage determines the functional coordinates of both vision and eye movements in the adult.  相似文献   
54.
55.
Yeast Dnm1p is a soluble, dynamin-related GTPase that assembles on the outer mitochondrial membrane at sites where organelle division occurs. Although these Dnm1p-containing complexes are thought to trigger constriction and fission, little is known about their composition and assembly, and molecules required for their membrane recruitment have not been isolated. Using a genetic approach, we identified two new genes in the fission pathway, FIS1 and FIS2. FIS1 encodes a novel, outer mitochondrial membrane protein with its amino terminus exposed to the cytoplasm. Fis1p is the first integral membrane protein shown to participate in a eukaryotic membrane fission event. In a related study (Tieu, Q., and J. Nunnari. 2000. J. Cell Biol. 151:353-365), it was shown that the FIS2 gene product (called Mdv1p) colocalizes with Dnm1p on mitochondria. Genetic and morphological evidence indicate that Fis1p, but not Mdv1p, function is required for the proper assembly and distribution of Dnm1p-containing fission complexes on mitochondrial tubules. We propose that mitochondrial fission in yeast is a multi-step process, and that membrane-bound Fis1p is required for the proper assembly, membrane distribution, and function of Dnm1p-containing complexes during fission.  相似文献   
56.
During the acute phase of infection with influenza A virus, the degree of lymphopenia correlates with severity of disease. Factors that contribute to T-cell activation during influenza virus infection may contribute to this observation. Since the immune response is initiated when dendritic cells (DC) interact with T cells, we have established an in vitro system to examine the effects of influenza virus infection on DC function. Our results show that allogeneic T-cell proliferation was dependent on the dose of A/PR/8/34 used to infect DC, with enhanced responses at low, but not high, multiplicities of infection. The lack of enhancement at high virus doses was not primarily due to the increased rate of DC apoptosis, but required viral replication and neuraminidase (NA) activity. Clusters that formed between DC or between DC and T cells were also dependent on the viral dose. This change in cellular interaction may oppose T-cell proliferation in response to DC infected with high doses of PR8, since the increased contact between DC resulted in the exclusion of T cells. The enhanced alloreactive T-cell response was restored by neutralization of transforming growth factor beta1 (TGF-beta1). It is likely that NA present on viral particles released from DC infected with high doses of PR8 activates TGF-beta1. Future studies will determine the mechanism by which TGF-beta1 modifies the in vitro T-cell response and address the contribution of this cytokine to the lymphopenia observed in severe disease.  相似文献   
57.
Mitochondria are dynamic organelles that undergo frequent division and fusion, but the molecular mechanisms of these two events are not well understood. Dnm1p, a mitochondria-associated, dynamin-related GTPase was previously shown to mediate mitochondrial fission. Recently, a genome-wide yeast two-hybrid screen identified an uncharacterized protein that interacts with Dnm1p. Cells disrupted in this new gene, which we call NET2, contain a single mitochondrion that consists of a network formed by interconnected tubules, similar to the phenotype of dnm1 Delta cells. NET2 encodes a mitochondria-associated protein with a predicted coiled-coil region and six WD-40 repeats. Immunofluorescence microscopy indicates that Net2p is located in distinct, dot-like structures along the mitochondrial surface, many of which colocalize with the Dnm1 protein. Fluorescence and immunoelectron microscopy shows that Dnm1p and Net2p preferentially colocalize at constriction sites along mitochondrial tubules. Our results suggest that Net2p is a new component of the mitochondrial division machinery.  相似文献   
58.
In the yeast Saccharomyces cerevisiae, mitochondria form a branched, tubular reticulum in the periphery of the cell. Mmm1p is required to maintain normal mitochondrial shape and in mmm1 mutants mitochondria form large, spherical organelles. To further explore Mmm1p function, we examined the localization of a Mmm1p-green fluorescent protein (GFP) fusion in living cells. We found that Mmm1p-GFP is located in small, punctate structures on the mitochondrial outer membrane, adjacent to a subset of matrix-localized mitochondrial DNA nucleoids. We also found that the temperature-sensitive mmm1-1 mutant was defective in transmission of mitochondrial DNA to daughter cells immediately after the shift to restrictive temperature. Normal mitochondrial nucleoid structure also collapsed at the nonpermissive temperature with similar kinetics. Moreover, we found that mitochondrial inner membrane structure is dramatically disorganized in mmm1 disruption strains. We propose that Mmm1p is part of a connection between the mitochondrial outer and inner membranes, anchoring mitochondrial DNA nucleoids in the matrix.  相似文献   
59.
60.
The electronic absorption and circular dichroism spectra of the complex formed by acridine orange with poly-α,L -glutamic acid in the α-helix conformation have been measured in aqueous solution over a range of glutamate residue-to-dye ratios. Three Cotton effects (circular dichroism bands) associated with the long wavelength absorption band of acridine orange at 4950 A. are induced by complex formation between the dye and the polypeptide, and further circular dichroism bands are observed in the ultraviolet region associated with the 2700 A., but not with the 2950 A. absorption band of the dye. The induced optical activity is found to be relatively insensitive to the glutamate residue-to-dye ratio and to be more dependent upon the ionic strength of the solution. By Measuring the circular dichroism spectrum of the complex in aqueous solution under streaming conditions with the light propagated along the direction of flow the observed circular dichroism bands are assigned to electronic transitions polarized parallel or perpendicular to the axis of the polypeptide α-helix. From the spectroscopic data it is inferred that the dye aggregate in the L -PGA–AO complex has the form of a left-handed superhelix bound to the core of the right-handed α-helix of poly-α,L -glutamic acid. It is shown that the longer and the shorter of the in-plane axes of the dye molecule are probably orientated respectively at a small angle, and radially, with respect to the axis of the α-helix in the complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号