首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   933篇
  免费   61篇
  国内免费   1篇
  2023年   10篇
  2022年   7篇
  2021年   45篇
  2020年   38篇
  2019年   28篇
  2018年   35篇
  2017年   21篇
  2016年   37篇
  2015年   65篇
  2014年   68篇
  2013年   78篇
  2012年   57篇
  2011年   66篇
  2010年   37篇
  2009年   44篇
  2008年   46篇
  2007年   40篇
  2006年   38篇
  2005年   23篇
  2004年   25篇
  2003年   20篇
  2002年   27篇
  2001年   6篇
  2000年   18篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   7篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   5篇
  1991年   5篇
  1990年   6篇
  1989年   8篇
  1988年   5篇
  1987年   5篇
  1986年   3篇
  1985年   9篇
  1984年   6篇
  1980年   7篇
  1979年   3篇
  1978年   3篇
  1974年   2篇
  1973年   2篇
  1971年   3篇
  1969年   2篇
  1968年   1篇
  1967年   3篇
  1965年   1篇
排序方式: 共有995条查询结果,搜索用时 15 毫秒
921.
Total internal reflection fluorescence microscopy (TIRFM) achieves subdiffraction axial sectioning by confining fluorophore excitation to a thin layer close to the cell/substrate boundary. However, it is often unknown how thin this light sheet actually is. Particularly in objective-type TIRFM, large deviations from the exponential intensity decay expected for pure evanescence have been reported. Nonevanescent excitation light diminishes the optical sectioning effect, reduces contrast, and renders TIRFM-image quantification uncertain. To identify the sources of this unwanted fluorescence excitation in deeper sample layers, we here combine azimuthal and polar beam scanning (spinning TIRF), atomic force microscopy, and wavefront analysis of beams passing through the objective periphery. Using a variety of intracellular fluorescent labels as well as negative staining experiments to measure cell-induced scattering, we find that azimuthal beam spinning produces TIRFM images that more accurately portray the real fluorophore distribution, but these images are still hampered by far-field excitation. Furthermore, although clearly measureable, cell-induced scattering is not the dominant source of far-field excitation light in objective-type TIRF, at least for most types of weakly scattering cells. It is the microscope illumination optical path that produces a large cell- and beam-angle invariant stray excitation that is insensitive to beam scanning. This instrument-induced glare is produced far from the sample plane, inside the microscope illumination optical path. We identify stray reflections and high-numerical aperture aberrations of the TIRF objective as one important source. This work is accompanied by a companion paper (Pt.2/2).  相似文献   
922.
Prion and Alzheimer diseases are fatal neurodegenerative diseases caused by misfolding and aggregation of the cellular prion protein (PrPC) and the β-amyloid peptide, respectively. Soluble oligomeric species rather than large aggregates are now believed to be neurotoxic. PrPC undergoes three proteolytic cleavages as part of its natural life cycle, α-cleavage, β-cleavage, and ectodomain shedding. Recent evidences demonstrate that the resulting secreted PrPC molecules might represent natural inhibitors against soluble toxic species. In this mini-review, we summarize recent observations suggesting the potential benefit of using PrPC-derived molecules as therapeutic agents in prion and Alzheimer diseases.  相似文献   
923.
Fc-fusion proteins are highly complex molecules, difficult to manufacture at scale. In this work, undesired proteoforms were detected during the manufacture of a therapeutic fusion protein produced in CHO cells. These species were characterized using gel electrophoresis, size exclusion chromatography and liquid chromatography-mass spectrometry leading to the identification of low molecular weight proteoforms presenting low N- and O-glycan site occupancy, as well as a low sialylation content. Upstream process parameters were investigated, and fusion protein quality was shown to be linked to the sodium chloride content of the medium. A mitigation strategy was developed to avoid formation of unwanted glyco-variants, resulting in an increased yield of highly glycosylated Fc-fusion protein. The effect of sodium chloride was shown to be independent of the osmolality increase and was hypothesized to be linked to a modulation of Golgi acidity, which is required for the correct localization and function of glycosyltransferases. Altogether, this study highlights the importance of the salt balance in cell culture media used to produce highly sialylated and occupied glycoproteins, helping to maximize the yield and increase robustness of processes aiming at producing biopharmaceutical complex therapeutic molecules.  相似文献   
924.
The quest for signatures of selection using single nucleotide polymorphism (SNP) data has proven efficient to uncover genes involved in conserved and/or adaptive molecular functions, but none of the statistical methods were designed to identify interacting alleles as targets of selective processes. Here, we propose a statistical test aimed at detecting epistatic selection, based on a linkage disequilibrium (LD) measure accounting for population structure and heterogeneous relatedness between individuals. SNP-based (Trv) and window-based (TcorPC1v) statistics fit a Student distribution, allowing to test the significance of correlation coefficients. As a proof of concept, we use SNP data from the Medicago truncatula symbiotic legume plant and uncover a previously unknown gene coadaptation between the MtSUNN (Super Numeric Nodule) receptor and the MtCLE02 (CLAVATA3-Like) signaling peptide. We also provide experimental evidence supporting a MtSUNN-dependent negative role of MtCLE02 in symbiotic root nodulation. Using human HGDP-CEPH SNP data, our new statistical test uncovers strong LD between SLC24A5 (skin pigmentation) and EDAR (hairs, teeth, sweat glands development) world-wide, which persists after correction for population structure and relatedness in Central South Asian populations. This result suggests that epistatic selection or coselection could have contributed to the phenotypic make-up in some human populations. Applying this approach to genome-wide SNP data will facilitate the identification of coadapted gene networks in model or non-model organisms.Subject terms: Population genetics, Epistasis, Rhizobial symbiosis  相似文献   
925.
  1. Investigations in nutritional ecology often require the identification of animal feeding patterns in natural conditions (what, where, and when do animals eat). Thus, methods are needed to trace not only individual resource uptake but also the relative use of different resources in a population or community.
  2. Recent biochemical developments allow predicting the use of sugar‐rich resources from insects in the field. Individual feeding status (feeding history, food sources) is inferred by comparing insect sugar profiles with those of individuals fed on controlled diets. Individual assignations are then used to predict the relative consumption of different resources at the population or community level. As both steps may generate error, accurate prediction rules are needed. However, research from other domains (e.g., protein‐marking studies) suggests that classical decision rules used for such tasks may sometimes induce bias.
  3. This study evaluated the performance of these rules and compared them to alternative methods on simulated, realistic datasets. It tested different methods for individual classification but also introduced methods for prevalence estimation, whose specific purpose is to estimate the relative frequency of different classes.
  4. Alternative methods substantially outperformed the traditional algorithms to predict insect individual feeding status and population class distribution (relative frequency of insects with different feeding status). This study provided a simple decision tool to choose a method according to dataset size, variance, and biochemical method used.
  5. Alternative methods should increase prediction confidence in future studies. Such approaches should easily be generalized to a wider range of systems.
  相似文献   
926.
International Journal of Peptide Research and Therapeutics - In this study, through the use of protein mimicry, a peptide was developed to activate the dopamine 1 receptor signaling pathway from...  相似文献   
927.
Among all the different organs of a plant, flowers might have one of the most dynamic microbial communities, since many microbes are transmitted during flowering by insects and pollen. However, little is known about how these microbes affect floral characteristics and plant reproduction. Among the microbes transmitted to flowers, pathogens may have highly negative effects on plants' fitness. In this study, we investigated whether a bacterial pathogen, Erwinia mallotivora, occurs on flowers of the host plant Mallotus japonicus, and whether the transmission of the pathogen to flowers can result in systemic infection and/or reduction of fruit production. The pathogen has been reported to infect through leaves, while its ecology on flowers is unknown. We first confirmed the presence of the pathogen on flowers, indicating possible transmission by visitors or pollen. Then, we showed that the bacteria can infect the plant through flowers by inoculating the pathogen to both male and female flowers. Interestingly, the symptoms on leaves appeared earlier on the female plants than on the males. Besides, the inoculation significantly decreased fruit set of the female plants. Our results suggest a higher cost of infection in a female than in a male once the pathogen infected flowers. Although the effects of pathogen infection to flowers have rarely investigated in wild plants, it would be an interesting topic for future study if such sexual differences in the infection cost can cause sexual conflict and intraspecific adaptation load.  相似文献   
928.
High-mobility group box-1 (HMGB1) is remarkably mobile in living cells, which reflects its ability to interact only transiently with both DNA and protein. This property is likely essential for HMGB1 nuclear activities. Nonetheless the weak interaction of HMGB1 with DNA and/or protein partners has also been a major limitation for investigating HMGB1 subnuclear localisation and for the identification of HMGB1 containing complexes by conventional biochemical approaches. In the present study, FRAP experiments demonstrated that DsRed-mediated oligomerization strongly reduces HMGB1 mobility due to an increased affinity for cellular chromatin. Moreover, oligomerized DsRed–HMGB1 exhibited a higher affinity for supercoiled DNA in vitro compared to its monomeric counterpart. These results indicate that DsRed-meditated oligomerization is prone to stabilize labile interactions involving HMGB1 both in vivo and in vitro.  相似文献   
929.
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号