首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   839篇
  免费   55篇
  2021年   15篇
  2020年   14篇
  2019年   5篇
  2018年   20篇
  2017年   11篇
  2016年   16篇
  2015年   42篇
  2014年   46篇
  2013年   73篇
  2012年   47篇
  2011年   63篇
  2010年   29篇
  2009年   28篇
  2008年   52篇
  2007年   32篇
  2006年   42篇
  2005年   35篇
  2004年   42篇
  2003年   36篇
  2002年   37篇
  2001年   17篇
  2000年   9篇
  1999年   7篇
  1998年   12篇
  1997年   10篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   7篇
  1992年   6篇
  1991年   7篇
  1990年   5篇
  1989年   14篇
  1988年   11篇
  1987年   6篇
  1986年   6篇
  1985年   6篇
  1984年   6篇
  1983年   6篇
  1982年   5篇
  1974年   3篇
  1972年   2篇
  1971年   3篇
  1969年   8篇
  1968年   5篇
  1967年   4篇
  1940年   2篇
  1938年   2篇
  1853年   3篇
  1851年   4篇
排序方式: 共有894条查询结果,搜索用时 22 毫秒
51.
Axonal Signals and Oligodendrocyte Differentiation   总被引:4,自引:0,他引:4  
Axons produce signals that regulate oligodendrocyte proliferation, survival, terminal differentiation, and myelinogenesis. We review here recent in vitro and in vivo experimental approaches that aim to characterize axonal signals to oligodendroglia and to identify molecular mediators that regulate differentiation of oligodendendrocytes. We propose that the promoters of myelin genes, whose activation during terminal differentiation is modulated by axonal signals, can provide a means to identify molecular mediators of axo-oligodendroglial signals.  相似文献   
52.
Two gamma-hydroxybutyric acid (GHB) analogues, trans-gamma-hydroxycrotonic acid (t-HCA) and gamma-(p-methoxybenzyl)-gamma-hydroxybutyric acid (NCS-435) displaced [3H]GHB from GHB receptors with the same affinity as GHB but, unlike GHB, failed to displace [3H]baclofen from GABAB receptors. The effect of the GHB analogues, GHB and baclofen, on G protein activity and hippocampal extracellular glutamate levels was compared. While GHB and baclofen stimulated 5'-O-(3-[35S]thiotriphospate) [35S]GTPgammaS binding both in cortex homogenate and cortical slices, t-HCA and NCS-435 were ineffective up to 1 mm concentration. GHB and baclofen effect was suppressed by the GABAB antagonist CGP 35348 but not by the GHB receptor antagonist NCS-382. Perfused into rat hippocampus, 500 nm and 1 mm GHB increased and decreased extracellular glutamate levels, respectively. GHB stimulation was suppressed by NCS-382, while GHB inhibition by CGP 35348. t-HCA and NCS-435 (0.1-1000 microm) locally perfused into hippocampus increased extracellular glutamate; this effect was inhibited by NCS-382 (10 microm) but not by CGP 35348 (500 microm). The results indicate that GHB-induced G protein activation and reduction of glutamate levels are GABAB-mediated effects, while the increase of glutamate levels is a GHB-mediated effect. Neither t-HCA nor NCS-435 reproduced GHB sedative/hypnotic effect in mice, confirming that this effect is GABAB-mediated. The GHB analogues constitute important tools for understanding the physiological role of endogenous GHB and its receptor.  相似文献   
53.
Resveratrol (3,4',5-trihydroxy-trans-stilbene) is a natural phytoalexin found in grapes and wine. It has antioxidant and antiproliferative activities, and has been shown to induce NAD(P)H:quinone oxidoreductase, also known as DT-diaphorase, in cultured mouse hepatoma cells. DT-diaphorase is a detoxifying enzyme for quinone-containing substances, due to its ability to prevent their one-electron reduction and the consequent generation of reactive oxygen species (ROS). The aim of the present study was to investigate whether oral administration of trans-resveratrol to guinea pigs (60 mg/l in tap water for 16 days, ad libitum) increases cardiac DT-diaphorase and, consequently, reduces the response of isolated atria to 2-methyl-1,4-naphthoquinone (menadione), the positive inotropic effect of which is related to the amount of ROS generated by its cardiac metabolism. In the cardiac tissue of resveratrol-treated animals, DT-diaphorase activity was significantly higher than that measured in control animals, the V(max) of the enzyme reaction being 75.47 +/- 3.87 and 50.73 +/- 0.63 nmoles/mg protein/min, respectively (p < 0.05). Resveratrol administration also significantly increased the activity of cardiac catalase (32.20 +/- 2.39 vs. 25.14 +/- 3.85 units/mg protein in treated and control animals, respectively; p < 0.001). As a consequence, menadione metabolism by the cardiac homogenate obtained from resveratrol-treated animals generated a smaller amount of ROS and, in electrically driven left atria, menadione produced a significantly lower increase in the force of contraction than in atria isolated from control animals. These results indicate that oral administration of resveratrol exerts cardioprotection against ROS-mediated menadione toxicity.  相似文献   
54.
Candida antarctica lipase B (CALB) and Thermomyces lanuginosa lipase (TLL) were evaluated as catalysts in different reaction media using hydrolysis of tributyrin as model reaction. In o/w emulsions, the enzymes were used in the free form and for use in monophasic organic media, the lipases were adsorbed on porous polypropylene (Accurel EP-100). In monophasic organic media, the highest specific activity of both lipases was obtained in pure tributyrin at a water activity of >0.5 and at an enzyme loading of 10 mg/g support. With tributyrin emulsified in water, the specific activities were 2780 micromol min(-1) mg(-1) for TLL and 535 micromol min(-1) mg(-1) for CALB. Under optimal conditions in pure tributyrin, CALB expressed 49% of the activity in emulsion (264 micromol min(-1) mg(-1)) while TLL expressed only 9.2% (256 micromol min(-1) mg(-1)) of its activity in emulsion. This large decrease is probably due to the structure of TLL, which is a typical lipase with a large lid domain. Conversion between open and closed conformers of TLL involves large internal movements and catalysis probably requires more protein mobility in TLL than in CALB, which does not have a typical lid region. Furthermore, TLL lost more activity than CALB when the water activity was reduced below 0.5, which could be due to further reduction in protein mobility.  相似文献   
55.
Although the N-terminal BOX-I domain of the tumor suppressor protein p53 contains the primary docking site for MDM2, previous studies demonstrated that RNA stabilizes the MDM2.p53 complex using a p53 mutant lacking the BOX-I motif. In vitro assays measuring the specific activity of MDM2 in the ligand-free and RNA-bound state identified a novel MDM2 interaction site in the core domain of p53. As defined using phage-peptide display, the RNA.MDM2 isoform exhibited a notable switch in peptide binding specificity, with enhanced affinity for novel peptide sequences in either p53 or small nuclear ribonucleoprotein-U (snRNP-U) and substantially reduced affinity for the primary p53 binding site in the BOX-I domain. The consensus binding site for the RNA.MDM2 complex within p53 is SGXLLGESXF, which links the S9-S10 beta-sheets flanking the BOX-IV and BOX-V motifs in the core domain and which is a site of reversible conformational flexibility in p53. Mutation of conserved amino acids in the linker at Ser(261) and Leu(264), which bridges the S9-S10 beta-sheets, stimulated p53 activity from reporter templates and increased MDM2-dependent ubiquitination of p53. Furthermore, mutation of the conserved Phe(270) within the S10 beta-sheet resulted in a mutant p53, which binds more stably to RNA.MDM2 complexes in vitro and which is strikingly hyper-ubiquitinated in vivo. Introducing an Ala(19) mutation into the p53(F270A) protein abolished both RNA.MDM2 complex binding and hyper-ubiquitination in vivo, thus indicating that p53(F270A) protein hyper-ubiquitination depends upon MDM2 binding to its primary site in the BOX-I domain. Together, these data identify a novel MDM2 binding interface within the S9-S10 beta-sheet region of p53 that plays a regulatory role in modulating the rate of MDM2-dependent ubiquitination of p53 in cells.  相似文献   
56.
In human rabdomiosarcoma cells (TE671/RD) chronic exposure to 500 nM thapsigargin (a powerful inhibitor of the endoplasmic reticulum Ca2+-ATPases) resulted in the induction of the stress protein GRP78/BIP. Making use of the surface biotinylation method, followed by the isolation of the GRP78 using ATP-agarose affinity chromatography, it was found that a fraction of the thapsigargin-induced GRP78 is expressed on the cell surface. The presence of GRP78 on the membrane of thapsigargin-treated cells was confirmed by fractionation of cell lysates into a soluble and a membrane fraction, followed by Western blot analysis with an anti-GRP78 antibody. It was also found that conspicuous amounts of GRP78 are present in the culture medium collected from thapsigargin-treated cultures. This extracellular GRP78 originates mostly by an active release from intact cells and does not result solely from the leakage of proteins from dead cells. Moreover, small amounts of circulating, free GRP78 and naturally-occurring anti-GRP78 autoantibodies were detected in the peripheral circulation of healthy human individuals.  相似文献   
57.
Among HLA-DP specificities, HLA-DP4 specificity involves at least two molecules, HLA-DPA1*0103/DPB1*0401 (DP401) and HLA-DPA1*0103/DPB1*0402 (DP402), which differ from each other by only three residues. Together, they are present worldwide at an allelic frequency of 20-60% and are the most abundant human HLA II alleles. Strikingly, the peptide-binding specificities of these molecules have never been investigated. Hence, in this study, we report the peptide-binding motifs of both molecules. We first set up a binding assay specific for the immunopurified HLA-DP4 molecules. Using multiple sets of synthetic peptides, we successfully defined the amino acid preferences of the anchor residues. With these assays, we were also able to identify new peptide ligands from allergens and viral and tumor Ags. DP401 and DP402 exhibit very similar patterns of recognition in agreement with molecular modeling of the complexes. Pockets P1 and P6 accommodate the main anchor residues and interestingly contain only two polymorphic residues, beta86 and beta11, respectively. Both positions are almost dimorphic and thus produce a limited number of pocket combinations. Taken together, our results support the existence of three main binding supertypes among HLA-DP molecules and should significantly contribute to the identification of universal epitopes to be used in peptide-based vaccines for cancer, as well as for allergic or infectious diseases.  相似文献   
58.
Neuronal calcium sensor-1 (NCS-1) or the originally identified homologue frequenin belongs to a superfamily of EF-hand calcium binding proteins. Although NCS-1 is thought to enhance synaptic efficacy or exocytosis mainly by activating ion channel function, the detailed molecular basis for the enhancement is still a matter of debate. Here, mechanisms underlying the NCS-1-evoked enhancement of exocytosis were investigated using PC12 cells overexpressing NCS-1. NCS-1 was found to have a broad distribution in the cells being partially distributed in the cytosol and associated to vesicles and tubular-like structures. Biochemical and immunohistochemical studies indicated that NCS-1 partially colocalized with the light synaptic vesicle marker synaptophysin. When stimulated with UTP or bradykinin, agonists to phospholipase C-linked receptors, NCS-1 enhanced the agonist-mediated elementary and global Ca2+ signaling and increased the levels of downstream signals of phosphatidylinositol 4-kinase. NCS-1 enhanced the UTP-evoked exocytosis but not the depolarization-evoked Ca2+ responses or exocytosis, suggesting that the enhancement by NCS-1 should involve phospholipase C-linked receptor-mediated signals rather than the Ca2+ channels or exocytotic machinery per se. Taken together, NCS-1 enhances phosphoinositide turnover, resulting in enhancement of Ca2+ signaling and exocytosis. This is a novel regulatory mechanism of exocytosis that might involve the activation of phosphatidylinositol 4-kinase.  相似文献   
59.
Soluble MHC class I molecules loaded with antigenic peptides are available either to detect and to enumerate or, alternatively, to sort and expand MHC class I-restricted and peptide-reactive T cells. A defined number of MHC class I/peptide complexes can now be implemented to measure T cell responses induced upon Ag-specific stimulation, including CD3/CD8/zeta-chain down-regulation, pattern, and quantity of cytokine secretion. As a paradigm, we analyzed the reactivity of a Melan-A/MART-1-specific and HLA-A2-restricted CD8(+) T cell clone to either soluble or solid-phase presented peptides, including the naturally processed and presented Melan-A/MART-1 peptide AAGIGILTV or the peptide analog ELAGIGILTV presented either by the HLA-A2 wild-type (wt) or mutant (alanineright arrowvaline aa 245) MHC class I molecule, which reduces engagement of the CD8 molecule with the HLA-A2 heavy chain. Soluble MHC class I complexes were used as either monomeric or tetrameric complexes. Soluble monomeric MHC class I complexes, loaded with the Melan-A/MART-1 peptide, resulted in CD3/CD8 and TCR zeta-chain down-regulation, but did not induce measurable cytokine release. In general, differences pertaining to CD3/CD8/zeta-chain regulation and cytokine release, including IL-2, IFN-gamma, and GM-CSF, were associated with 1) the format of Ag presentation (monomeric vs tetrameric MHC class I complexes), 2) wt vs mutant HLA-A2 molecules, and 3) the target Ag (wt vs analog peptide). These differences are to be considered if T cells are exposed to recombinant MHC class I Ags loaded with peptides implemented for detection, activation, or sorting of Ag-specific T cells.  相似文献   
60.
In previous works we demonstrated that 2-methyl-1,4-naphthoquinone (menadione) causes a marked increase in the force of contraction of guinea pig and rat isolated atria. This inotropic effect was significantly higher in the guinea pig than in the rat and was strictly related to the amount of superoxide anion (O(2)(*-)), generated as a consequence of cardiac menadione metabolism through mitochondrial NADH-ubiquinone oxidoreductase. The present study was designed to further elucidate the basis of these quantitatively different positive inotropic responses. To this purpose, we measured O(2)(*-) and hydrogen peroxide (H(2)O(2)) produced by mitochondria isolated from guinea pig and rat hearts in the presence of 20 microM menadione. Moreover, we evaluated the menadione detoxification activity (DT-diaphorase) and the antioxidant defences of guinea pig and rat hearts, namely their GSH/GSSG content, Cu/Zn- and Mn-dependent superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (Gpx) activities. Our results indicate that DT-diaphorase activity and glutathione levels were similar in both animal species. By contrast, guinea pig mitochondria produced greater amounts of O(2)(*-) and H(2)O(2) than those of rat heart. This is probably due to both the higher Mn-SOD activity (2.93 +/- 0.02 vs. 1.95 +/- 0.06 units/mg protein; P < 0.05) and to the lower Gpx activity (10.09 +/- 0.30 vs. 32.67 +/- 1.02 units/mg protein; P < 0.001) of guinea pig mitochondria. A lower CAT activity was also observed in guinea pig mitochondria (2.40 +/- 0.80 vs. 6.13 +/- 0.20 units/mg protein; P < 0.01). Taken together, these data provide a rational explanation for the greater susceptibility of guinea pig heart to the toxic effect of menadione: because of the greater amount of O(2)(*-) generated by the quinone and the higher mitochondrial Mn-SOD activity, guinea pig heart is exposed to more elevated concentrations of H(2)O(2) that is less efficiently detoxified, because of lower Gpx and CAT levels of mitochondria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号