首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   5篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   7篇
  2014年   6篇
  2013年   5篇
  2012年   4篇
  2011年   6篇
  2010年   4篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   7篇
  2003年   2篇
  2002年   4篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1988年   1篇
  1987年   1篇
  1979年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1964年   1篇
排序方式: 共有97条查询结果,搜索用时 0 毫秒
91.
Turnover of the cell wall of Gram-positive bacteria   总被引:48,自引:0,他引:48  
  相似文献   
92.
93.
94.
In this work, a chemomechanical model describing the growth dynamics of cell-matrix adhesion structures (i.e., focal adhesions (FAs)) is developed. We show that there are three regimes for FA evolution depending on their size. Specifically, nascent adhesions with initial lengths below a critical value that are yet to engage in actin fibers will dissolve, whereas bigger ones will grow into mature FAs with a steady state size. In adhesions where growth surpasses the steady state size, disassembly will occur until their sizes are reduced to the equilibrium state. This finding arises from the fact that polymerization of adhesion proteins is force-dependent. Under actomyosin contraction, individual integrin bonds within small FAs (i.e., nascent adhesions or focal complexes) must transmit higher loads while the phenomenon of stress concentration occurs at the edge of large adhesion patches. As such, an effective stiffness of the FA-extracellular matrix complex that is either too small or too large will be relatively low, resulting in a limited actomyosin pulling force developed at the edge that is insufficient to prevent disassembly. Furthermore, it is found that a stiffer extracellular matrix and/or nucleus, as well as a stronger chemomechanical feedback, will induce larger adhesions along with a higher level of contraction force. Interestingly, switching the extracellular side from an elastic half-space, corresponding to some widely used in vitro gel substrates, to a one-dimensional fiber (as in the case of cells anchoring to a fibrous scaffold in vivo) does not qualitative change these conclusions. Our model predictions are in good agreement with a variety of experimental observations obtained in this study as well as those reported in the literature. Furthermore, this new model, to our knowledge, provides a framework with which to understand how both intracellular and extracellular perturbations lead to changes in adhesion structure number and size.  相似文献   
95.
96.
Disjunct, pantropical distributions are a common pattern among avian lineages, but disentangling multiple scenarios that can produce them requires accurate estimates of historical relationships and timescales. Here, we clarify the biogeographical history of the pantropical avian family of trogons (Trogonidae) by re-examining their phylogenetic relationships and divergence times with genome-scale data. We estimated trogon phylogeny by analysing thousands of ultraconserved element (UCE) loci from all extant trogon genera with concatenation and coalescent approaches. We then estimated a time frame for trogon diversification using MCMCTree and fossil calibrations, after which we performed ancestral area estimation using BioGeoBEARS. We recovered the first well-resolved hypothesis of relationships among trogon genera. Trogons comprise three clades, each confined to one of three biogeographical regions: Africa, Asia and the Neotropics, with the African clade sister to the others. These clades diverged rapidly during the Oligocene-Miocene transition. Our biogeographical analyses identify a Eurasian origin for stem trogons and a crown clade arising from ancestors broadly distributed across Laurasia and Africa. The pantropical ranges of trogons are relicts of a broader Afro-Laurasian distribution that was fragmented across Africa, Asia and the New World in near coincident fashion during the Oligocene-Miocene transition by global cooling and changing habitats along the Beringian land bridge and North Africa.  相似文献   
97.
Patterns of nest site selection exhibited at the scale of a population should result from initial preferences of individuals occupying nest sites as well as preferences exhibited by individuals moving between nest sites. We tested whether nest‐site preferences measured at the population scale were predictive of patterns of burrow switching by Leach's Storm‐Petrels (Oceanodroma leucorhoa), a long‐lived seabird that nests in underground burrows. Breeding pairs generally choose from the pool of available existing burrows rather than constructing new burrows, and a portion of the burrows in a colony remains unused in any breeding season. We quantified burrow preference at a colony on Kent Island, New Brunswick, over four breeding seasons. We used a classification and regression tree analysis to build a predictive model of nest‐site selection. Preferentially occupied burrows were drier, longer, had larger nest chambers, and were in areas of higher burrow density. To measure preferences during burrow switching, we tracked individuals that switched burrows, comparing characteristics of the burrows in which these birds were originally found to those they inhabited at the end of the study period. Characteristics preferred by switching individuals were a subset of those observed at the scale of the population; individuals moved to burrows that were drier, longer, and had larger nest chambers. Our results show how preferences of individuals that move between nest sites contribute to nest site preferences exhibited at the population scales commonly tested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号