首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8283篇
  免费   764篇
  国内免费   2篇
  2023年   35篇
  2022年   24篇
  2021年   185篇
  2020年   127篇
  2019年   145篇
  2018年   180篇
  2017年   179篇
  2016年   243篇
  2015年   433篇
  2014年   485篇
  2013年   611篇
  2012年   741篇
  2011年   709篇
  2010年   464篇
  2009年   422篇
  2008年   586篇
  2007年   519篇
  2006年   514篇
  2005年   455篇
  2004年   483篇
  2003年   341篇
  2002年   385篇
  2001年   92篇
  2000年   54篇
  1999年   78篇
  1998年   93篇
  1997年   60篇
  1996年   35篇
  1995年   27篇
  1994年   27篇
  1993年   33篇
  1992年   18篇
  1991年   23篇
  1990年   30篇
  1989年   18篇
  1988年   12篇
  1987年   12篇
  1986年   12篇
  1985年   10篇
  1984年   15篇
  1983年   7篇
  1982年   13篇
  1981年   12篇
  1980年   11篇
  1979年   8篇
  1978年   12篇
  1974年   6篇
  1973年   14篇
  1971年   5篇
  1967年   5篇
排序方式: 共有9049条查询结果,搜索用时 15 毫秒
81.
82.
The boreal biome exchanges large amounts of carbon (C) and greenhouse gases (GHGs) with the atmosphere and thus significantly affects the global climate. A managed boreal landscape consists of various sinks and sources of carbon dioxide (CO2), methane (CH4), and dissolved organic and inorganic carbon (DOC and DIC) across forests, mires, lakes, and streams. Due to the spatial heterogeneity, large uncertainties exist regarding the net landscape carbon balance (NLCB). In this study, we compiled terrestrial and aquatic fluxes of CO2, CH4, DOC, DIC, and harvested C obtained from tall‐tower eddy covariance measurements, stream monitoring, and remote sensing of biomass stocks for an entire boreal catchment (~68 km2) in Sweden to estimate the NLCB across the land–water–atmosphere continuum. Our results showed that this managed boreal forest landscape was a net C sink (NLCB = 39 g C m?2 year?1) with the landscape–atmosphere CO2 exchange being the dominant component, followed by the C export via harvest and streams. Accounting for the global warming potential of CH4, the landscape was a GHG sink of 237 g CO2‐eq m?2 year?1, thus providing a climate‐cooling effect. The CH4 flux contribution to the annual GHG budget increased from 0.6% during spring to 3.2% during winter. The aquatic C loss was most significant during spring contributing 8% to the annual NLCB. We further found that abiotic controls (e.g., air temperature and incoming radiation) regulated the temporal variability of the NLCB whereas land cover types (e.g., mire vs. forest) and management practices (e.g., clear‐cutting) determined their spatial variability. Our study advocates the need for integrating terrestrial and aquatic fluxes at the landscape scale based on tall‐tower eddy covariance measurements combined with biomass stock and stream monitoring to develop a holistic understanding of the NLCB of managed boreal forest landscapes and to better evaluate their potential for mitigating climate change.  相似文献   
83.
There is growing international interest in better managing soils to increase soil organic carbon (SOC) content to contribute to climate change mitigation, to enhance resilience to climate change and to underpin food security, through initiatives such as international ‘4p1000’ initiative and the FAO's Global assessment of SOC sequestration potential (GSOCseq) programme. Since SOC content of soils cannot be easily measured, a key barrier to implementing programmes to increase SOC at large scale, is the need for credible and reliable measurement/monitoring, reporting and verification (MRV) platforms, both for national reporting and for emissions trading. Without such platforms, investments could be considered risky. In this paper, we review methods and challenges of measuring SOC change directly in soils, before examining some recent novel developments that show promise for quantifying SOC. We describe how repeat soil surveys are used to estimate changes in SOC over time, and how long‐term experiments and space‐for‐time substitution sites can serve as sources of knowledge and can be used to test models, and as potential benchmark sites in global frameworks to estimate SOC change. We briefly consider models that can be used to simulate and project change in SOC and examine the MRV platforms for SOC change already in use in various countries/regions. In the final section, we bring together the various components described in this review, to describe a new vision for a global framework for MRV of SOC change, to support national and international initiatives seeking to effect change in the way we manage our soils.  相似文献   
84.
85.
Purpose

Obsolescence, as premature end of use, increases the overall number of products produced and consumed, and thereby can increase the environmental impact. Measures to decrease the effects of obsolescence by altering the product or service design have the potential to increase use time (defined as the realized active service life) of devices, but can themselves have (environmental) drawbacks, for example, because the amount of material required for production increases. As such, paying special attention to methodological choices when assessing such measures and strategies using life cycle assessment (LCA) needs is crucial.

Methods

Open questions and key aspects of obsolescence, including the analysis of its effects and preventative measures, are discussed against the backdrop of the principles and framework for LCA given in ISO 14040/44, which includes guidance on how to define a useful functional unit and reference flow in the context of real-life use time.

Results and discussion

The open and foundational requirements of ISO 14040/14044 already form an excellent basis for analysis of the phenomenon obsolescence and its environmental impact in product comparisons. However, any analysis presumes clear definition of the goal and scope phase with special attention paid to aspects relevant to obsolescence: the target product and user group needs to be placed into context with the analysed “anti-obsolescence” measures. The reference flow needs to reflect a realized use time (and not solely a technical lifetime when not relevant for the product under study). System boundaries and types of data need to be chosen also in context of the anti-obsolescence measure to include, for example, the production of spare parts to reflect repairable design and/or manufacturer-specific yields to reflect high-quality manufacturing.

Conclusions

Understanding the relevant obsolescence conditions for the product system under study and how these may differ across the market segment or user types is crucial for a fair and useful comparison and the evaluation of anti-obsolescence measures.

  相似文献   
86.
The International Journal of Life Cycle Assessment - Since 2013, the European Commission (EC) is developing and testing the Product Environmental Footprint (PEF)—a product evaluation method,...  相似文献   
87.
88.
In oxygenic photosynthetic organisms, excluding angiosperms, flavodiiron proteins (FDPs) catalyze light‐dependent reduction of O2 to H2O. This alleviates electron pressure on the photosynthetic apparatus and protects it from photodamage. In Synechocystis sp. PCC 6803, four FDP isoforms function as hetero‐oligomers of Flv1 and Flv3 and/or Flv2 and Flv4. An alternative electron transport pathway mediated by the NAD(P)H dehydrogenase‐like complex (NDH‐1) also contributes to redox hemostasis and the photoprotection of photosynthesis. Four NDH‐1 types have been characterized in cyanobacteria: NDH‐11 and NDH‐12, which function in respiration; and NDH‐13 and NDH‐14, which function in CO2 uptake. All four types are involved in cyclic electron transport. Along with single FDP mutants (?flv1 and Δflv3) and the double NDH‐1 mutants (?d1d2, which is deficient in NDH‐11,2 and ?d3d4, which is deficient in NDH‐13,4), we studied triple mutants lacking one of Flv1 or Flv3, and NDH‐11,2 or NDH‐13,4. We show that the presence of either Flv1/3 or NDH‐11,2, but not NDH‐13,4, is indispensable for survival during changes in growth conditions from high CO2/moderate light to low CO2/high light. Our results show functional redundancy between FDPs and NDH‐11,2 under the studied conditions. We suggest that ferredoxin probably functions as a primary electron donor to both Flv1/3 and NDH‐11,2, allowing their functions to be dynamically coordinated for efficient oxidation of photosystem I and for photoprotection under variable CO2 and light availability.  相似文献   
89.
Because of the high risk of going unnoticed, cryptic species represent a major challenge to biodiversity assessments, and this is particularly true for taxa that include many such species, for example, bats. Long‐eared bats from the genus Plecotus comprise numerous cryptic species occurring in the Mediterranean Region and present complex phylogenetic relationships and often unclear distributions, particularly at the edge of their known ranges and on islands. Here, we combine Species Distribution Models (SDMs), field surveys and molecular analyses to shed light on the presence of a cryptic long‐eared bat species from North Africa, Plecotus gaisleri, on the islands of the Sicily Channel, providing strong evidence that this species also occurs in Europe, at least on the islands of the Western Mediterranean Sea that act as a crossroad between the Old Continent and Africa. Species Distribution Models built using African records of P. gaisleri and projected to the Sicily Channel Islands showed that all these islands are potentially suitable for the species. Molecular identification of Plecotus captured on Pantelleria, and recent data from Malta and Gozo, confirmed the species' presence on two of the islands in question. Besides confirming that P. gaisleri occurs on Pantelleria, haplotype network reconstructions highlighted moderate structuring between insular and continental populations of this species. Our results remark the role of Italy as a bat diversity hotspot in the Mediterranean and also highlight the need to include P. gaisleri in European faunal checklists and conservation directives, confirming the usefulness of combining different approaches to explore the presence of cryptic species outside their known ranges—a fundamental step to informing conservation.  相似文献   
90.
Plants vary widely in how common or rare they are, but whether commonness of species is associated with functional traits is still debated. This might partly be because commonness can be measured at different spatial scales, and because most studies focus solely on aboveground functional traits. We measured five root traits and seed mass on 241 central European grassland species, and extracted their specific leaf area, height, mycorrhizal status and bud-bank size from databases. Then we tested if trait values are associated with commonness at seven spatial scales, ranging from abundance in 16-m2 grassland plots, via regional and European-wide occurrence frequencies, to worldwide naturalization success. At every spatial scale, commonness was associated with at least three traits. The traits explained the greatest proportions of variance for abundance in grassland plots (42%) and naturalization success (41%) and the least for occurrence frequencies in Europe and the Mediterranean (2%). Low root tissue density characterized common species at every scale, whereas other traits showed directional changes depending on the scale. We also found that many of the effects had significant non-linear effects, in most cases with the highest commonness-metric value at intermediate trait values. Across scales, belowground traits explained overall more variance in species commonness (19.4%) than aboveground traits (12.6%). The changes we found in the relationships between traits and commonness, when going from one spatial scale to another, could at least partly explain the maintenance of trait variation in nature. Most importantly, our study shows that within grasslands, belowground traits are at least as important as aboveground traits for species commonness. Therefore, belowground traits should be more frequently considered in studies on plant functional ecology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号