首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3585篇
  免费   228篇
  2021年   34篇
  2019年   18篇
  2018年   37篇
  2017年   33篇
  2016年   50篇
  2015年   87篇
  2014年   96篇
  2013年   205篇
  2012年   148篇
  2011年   161篇
  2010年   96篇
  2009年   82篇
  2008年   161篇
  2007年   155篇
  2006年   138篇
  2005年   167篇
  2004年   154篇
  2003年   160篇
  2002年   157篇
  2001年   142篇
  2000年   131篇
  1999年   125篇
  1998年   55篇
  1997年   46篇
  1996年   45篇
  1995年   55篇
  1994年   36篇
  1993年   37篇
  1992年   99篇
  1991年   72篇
  1990年   75篇
  1989年   66篇
  1988年   67篇
  1987年   70篇
  1986年   53篇
  1985年   48篇
  1984年   37篇
  1983年   39篇
  1982年   35篇
  1981年   28篇
  1980年   19篇
  1979年   27篇
  1978年   32篇
  1977年   23篇
  1976年   23篇
  1975年   29篇
  1973年   20篇
  1970年   21篇
  1969年   17篇
  1968年   18篇
排序方式: 共有3813条查询结果,搜索用时 703 毫秒
991.
992.
Guanidinoacetate methyltransferase (GAMT) is the enzyme that catalyzes the last step of creatine biosynthesis. The enzyme is found in abundance in the livers of all vertebrates. The intact GAMT from recombinant rat liver has been crystallized with an inhibitor S-adenosylhomocysteine (SAH) and a substrate guanidinoacetate (GAA), and with SAH and an inhibitor guanidine (GUN). These ternary complex structures have been determined at 2.0 A resolution. GAMT has an alpha/beta open-sandwich structure, and the N-terminal section (residues 1-42) covers the active site entrance so that the active site is not visible. SAH has extensive interactions with GAMT through H-bonds and hydrophobic interactions. The guanidino groups of GAA and GUN form two pairs of H-bonds with E45 and D134, respectively. The carboxylate group of GAA interacts with the backbone amide groups of L170 and T171. A model structure of GAMT containing the two substrates (SAM and GAA) was built by attaching a methyl group (C(E)) on S(D) of the bound SAH. On the basis of this model structure, a catalytic mechanism of GAMT is proposed. The active site entrance is opened when the N-terminal section is moved out. GAA and SAM enter the active site and interact with the amino acid residues on the surface of the active site by polar and nonpolar interactions. O(D1) of D134 and C(E) of SAM approach N(E) of GAA from the tetrahedral directions. The O(D1)...N(E) and C(E)...N(E) distances are 2.9 and 2.2 A, respectively. It is proposed that three slightly negatively charged carbonyl oxygen atoms (O of T135, O of C168, and O(B) of GAA) around O(D1) of D134 increase the pK(a) of O(D1) so that O(D1) abstracts the proton on N(E). A strong nucleophile is generated on the deprotonated N(E) of GAA, which abstracts the methyl group (C(E)) from the positively charged S(D) of SAM, and creatine (methyl-GAA) and SAH (demethyl-SAM) are produced. E45, D134, and Y221 mutagenesis studies support the proposed mechanism. A mutagenesis study and the inhibitory mechanism of guanidine analogues support the proposed mechanism.  相似文献   
993.
Nisimoto Y  Ogawa H  Miyano K  Tamura M 《Biochemistry》2004,43(29):9567-9575
A series of truncated forms of His(6)-tagged gp91phox were expressed, solubilized, and purified in the presence of 30 microM FAD. The truncated gp91phox with the longest sequence in the C-terminal region (221-570) (gp91C) showed the highest activity (turnover rate, 0.92) for NADPH diaphorase in the presence of either 0.3% Triton X-100 or 0.5% Genapol X-80. Activity was not inhibited by superoxide dismutase but was blocked by an inhibitor of the respiratory burst oxidase, diphenylene iodonium. The flavinated gp91C contained approximately 0.9 mol of FAD/mol of protein (MW 46 kDa) and 12% alpha-helix content. In the absence of p47phox, p67phox showed considerable activation of gp91C in the presence of Rac. Carboxyl-terminal truncated p67phox (1-210) (p67N), which is the minimal active fragment, was fused with Rac or Q61LRac. The fusion protein p67N-Rac (or p67N-Q61LRac) showed a 2-fold higher stimulatory effect on NBT reductase activity of gp91C than the combination of the individual cytosolic p67N and Rac proteins. In contrast, Rac-p67N, a fusion with the opposite orientation, showed a smaller significant effect on the enzyme activity. The EC(50) values for p67phox, p67N, p67N-Rac, and Rac-p67N were 8.00. 4.35, 2.56, and 15.2 microM, respectively, while the K(m) value for NADPH in the presence and absence of the cytosolic components was almost the same (40-55 microM). In the presence of Rac, p67N or p67phox bound to gp91C with a molar ratio of approximately 1:1 but neither p67N nor Rac alone showed significant binding.  相似文献   
994.
We recorded (13)C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled bacteriorhodopsin (bR) and a variety of its mutants, E9Q, E74Q, E194Q/E204Q (2Glu), E9Q/E194Q/E204Q (3Glu), and E9Q/E74Q/E194Q/E204Q (4Glu), to clarify contributions of the extracellular (EC) Glu residues to the conformation and dynamics of bR. Replacement of Glu-9 or Glu-74 and Glu-194/204 at the EC surface by glutamine(s) induced significant conformational changes in the cytoplasmic (CP) surface structure. These changes occurred in the C-terminal alpha-helix and loops, and also those of the EC surface, as viewed from (13)C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled proteins. Additional conformational changes in the transmembrane alpha-helices were induced as modified retinal-protein interactions for multiple mutants involving the E194Q/E204Q pair. Significant dynamic changes were induced for the triple or quadruple mutants, as shown by broadened (13)C NMR peaks of [1-(13)C]Val-labeled proteins. These changes were due to acquired global fluctuation motions of the order of 10(-4)-10(-5) s as a result of disorganized trimeric form. In such mutants (13)C NMR signals from Val residues of [1-(13)C]Val-labeled triple and quadruple mutants near the CP and EC surfaces (including 8.7-A depth from the surface) were substantially suppressed, as shown by comparative (13)C NMR studies with and without 40 micro M Mn(2+) ion. We conclude that these Glu residues at the EC surface play an important role in maintaining the native secondary structure of bR in the purple membrane.  相似文献   
995.
Circular birefringence (CB, or optical rotation) and linear birefringence (LB) were measured for gellan gum aqueous solutions with and without salt to examine the gelling system in the helical structure as well as in the orientation. It was found that gelling samples with salt show nonzero LB values, whereas LB is zero for the samples without salt even in the gel state. This difference can be explained by the thermal deformation of the system containing anisotropic aggregations of helices formed with the shielding effect of the added salt on the intramolecular and intermolecular electrostatic repulsions. Considering that the presence of LB in the system affects the estimation of CB, we developed an original procedure of the CB measurement to eliminate the contribution of LB. It was shown that our methods for eliminating the contribution of LB can improve the CB measurement for the gellan gum gel. The temperature dependence of [alpha] for the samples with salt in the gel state is quite different from that for the samples without salt, suggesting that the aggregates of helices in the samples containing a high concentration of salt form a supramolecular structure that contributes to CB.  相似文献   
996.
Insulin receptor substrate-1 (IRS-1) is an essential molecule for intracellular signaling of insulin-like growth factor (IGF)-I and insulin, both of which are potent anabolic regulators of bone and cartilage metabolism. To investigate the role of IRS-1 in bone regeneration, fracture was introduced in the tibia, and its healing was compared between wild-type (WT) mice and mice lacking the IRS-1 gene (IRS-1(-/-) mice). Among 15 IRS-1(-/-) mice, 12 remained in a non-union state even at 10 weeks after the operation, whereas all 15 WT mice showed a rigid bone union at 3 weeks. This impairment was because of the suppression of callus formation with a decrease in chondrocyte proliferation and increases in hypertrophic differentiation and apoptosis. Reintroduction of IRS-1 to the IRS-1(-/-) fractured site using an adenovirus vector significantly restored the callus formation. In the culture of chondrocytes isolated from the mouse growth plate, IRS-1(-/-) chondrocytes showed less mitogenic ability and Akt phosphorylation than WT chondrocytes. An Akt inhibitor decreased the IGF-I-stimulated DNA synthesis of chondrocytes more potently in the WT culture than in the IRS-1(-/-) culture. We therefore conclude that IRS-1 deficiency impairs bone healing at least partly by inhibiting chondrocyte proliferation through the phosphatidylinositol 3-kinase/Akt pathway, and we propose that IRS-1 can be a target molecule for bone regenerative medicine.  相似文献   
997.
Transmembrane ion transport processes play a key role in the adaptation of cells to hyperosmotic conditions. Previous work has shown that the disruption of a ktrB/ntpJ-like putative Na(+)/K(+) transporter gene in the cyanobacterium Synechocystis sp. PCC 6803 confers increased Na(+) sensitivity, and inhibits HCO(3)(-) uptake. Here, we report on the mechanistic basis of this effect. Heterologous expression experiments in Escherichia coli show that three Synechocystis genes are required for K(+) transport activity. They encode an NAD(+)-binding peripheral membrane protein (ktrA; sll0493), an integral membrane protein, belonging to a superfamily of K(+) transporters (ktrB; formerly ntpJ; slr1509), and a novel type of ktr gene product, not previously found in Ktr systems (ktrE; slr1508). In E. coli, Synechocystis KtrABE-mediated K(+) uptake occurred with a moderately high affinity (K(m) of about 60 microm), and depended on both Na(+) and a high membrane potential, but not on ATP. KtrABE neither mediated Na(+) uptake nor Na(+) efflux. In Synechocystis sp. PCC 6803, KtrB-mediated K(+) uptake required Na(+) and was inhibited by protonophore. A Delta ktrB strain was sensitive to long term hyperosmotic stress elicited by either NaCl or sorbitol. Hyperosmotic shock led initially to loss of net K(+) from the cells. The Delta ktrB cells shocked with sorbitol failed to reaccumulate K(+) up to its original level. These data indicate that in strain PCC 6803 K(+) uptake via KtrABE plays a crucial role in the early phase of cell turgor regulation after hyperosmotic shock.  相似文献   
998.
We isolated the most lethal toxins in the venom of the Malayan krait (Bungarus candidus), one of the medically most important snake species in southeast Asia. Three beta-BTx like basic neurotoxins, T1-1, T1-2, and T2, with PLA2 activity were isolated from pooled venom of eight B. candidus from southern Thailand by cation-exchange chromatography, followed by adsorption chromatography on hydroxylapatite and RP-HPLC, with 14-, 16-, and 4-fold increases in toxicity compared to crude venom. The LDs50 determined in mice weighing 18-20 g were 0.26, 0.22, and 0.84 micro g per mouse with i.v. injection. T1-1 and T1-2 possessed comparable lethal toxicities to those of beta1-BTx, the most toxic neurotoxin in B. multicinctus venom, and the major neurotoxin in B. flaviceps venom. The apparent molecular weights of the native toxins were approximately 25-25.5 kDa. They consist of two polypeptide chains with apparent molecular weights of 15.5-16.5 and 8-8.5 kDa, respectively. The amino terminal sequences of the two chains of each of the toxins determined by Edman degradation exhibited considerable similarity with those of the A-chains and B-chains of beta-BTxs in the venom of Bungarus multicinctus.  相似文献   
999.
A Cu-containing nitrous oxide reductase (HdN2OR) from a methylotrophic denitrifying bacterium, Hyphomicrobium denitrificans A3151, has been aerobically prepared and spectroscopically characterized. Purple and blue forms of HdN2OR have been isolated. Each form is a homodimer comprising monomers with a molecular mass of 65 kDa. The visible absorption spectrum of the purple form (designated as form A) exhibits three absorption bands at 480 nm, 540 nm, and 650 nm, with a shoulder near 780 nm, and that of the blue form (designated as form B) shows only one absorption band at 650 nm. Reversible spectral changes, between those of forms A and B, are observed on treatment of these forms with redox reagents. Forms A and B are oxidized and reduced forms, respectively. The 77-K EPR spectrum of form A indicates a seven-line copper hyperfine structure centered at gparallel (gparallel=2.18, Aparallel=4.5 mT), which is characteristic of a mixed-valence binuclear CuA site (Amv), and that of form B exhibits a broad featureless signal (g=2.06). The various spectral data of HdN2OR suggest that form A contains Amv and a mixed-valence tetranuclear CuZ site (Zmv*), while form B includes reduced CuA (Ared) and Zmv*. The pH profiles of N2OR activity of the two forms are similar to each other, and the specific activity at optimum pH 8.8 was estimated to be 45 +/- 5 and 29 +/- 3 micromol.min(-1).mg(-1) for forms A and B, respectively.  相似文献   
1000.
Leukocyte infiltration during inflammation is mediated by the sequential actions of adhesion molecules and chemokines. By using a rat ureteral obstruction model, we showed previously that L-selectin plays an important role in leukocyte infiltration into the kidney. Here we report the purification, identification, and characterization of an L-selectin-binding heparan sulfate proteoglycan (HSPG) expressed in the rat kidney. Partial amino acid sequencing and Western blotting analyses showed that the L-selectin-binding HSPG is collagen XVIII, a basement membrane HSPG. The binding of L-selectin to isolated collagen XVIII was specifically inhibited by an anti-L-selectin monoclonal antibody, EDTA, treatment of the collagen XVIII with heparitinase or heparin but not by chemically desulfated heparin. A cell binding assay showed that the L-selectin-collagen XVIII interaction mediates cell adhesion. Interestingly, collagen XVIII also interacted with a chemokine, monocyte chemoattractant protein-1, and presented it to a monocytic cell line, THP-1, which enhanced the alpha(4)beta(1) integrin-mediated binding of the THP-1 cells to vascular cell adhesion molecule-1. Thus, collagen XVIII may provide a link between selectin-mediated cell adhesion and chemokine-induced cellular activation and accelerate the progression of leukocyte infiltration in renal inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号