首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3091篇
  免费   216篇
  2023年   6篇
  2022年   13篇
  2021年   60篇
  2020年   34篇
  2019年   58篇
  2018年   70篇
  2017年   58篇
  2016年   87篇
  2015年   139篇
  2014年   178篇
  2013年   235篇
  2012年   262篇
  2011年   262篇
  2010年   172篇
  2009年   132篇
  2008年   191篇
  2007年   198篇
  2006年   187篇
  2005年   161篇
  2004年   161篇
  2003年   137篇
  2002年   135篇
  2001年   37篇
  2000年   20篇
  1999年   19篇
  1998年   37篇
  1997年   25篇
  1996年   27篇
  1995年   24篇
  1994年   23篇
  1993年   27篇
  1992年   17篇
  1991年   20篇
  1990年   10篇
  1989年   8篇
  1988年   8篇
  1987年   6篇
  1986年   9篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   9篇
  1981年   7篇
  1978年   4篇
  1976年   3篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1969年   2篇
  1966年   2篇
排序方式: 共有3307条查询结果,搜索用时 718 毫秒
131.
Due to the lack of complete understanding of metabolic networks and reaction pathways, establishing a universal mechanistic model for mammalian cell culture processes remains a challenge. Contrarily, data-driven approaches for modeling these processes lack extrapolation capabilities. Hybrid modeling is a technique that exploits the synergy between the two modeling methods. Although mammalian cell cultures are among the most relevant processes in biotechnology and indeed looks ideal for hybrid modeling, their application has only been proposed but never developed in the literature. This study provides a quantitative assessment of the improvement brought by hybrid models with respect to the state-of-the-art statistical predictive models in the context of therapeutic protein production. This is illustrated using a dataset obtained from a 3.5 L fed-batch experiment. With the goal to robustly define the process design space, hybrid models reveal a superior capability to predict the time evolution of different process variables using only the initial and process conditions in comparison to the statistical models. Hybrid models not only feature more accurate prediction results but also demonstrate better robustness and extrapolation capabilities. For the future application, this study highlights the added value of hybrid modeling for model-based process optimization and design of experiments.  相似文献   
132.
133.
134.
135.
Saposins and Their Interaction with Lipids   总被引:2,自引:0,他引:2  
The lysosomal degradation of several sphingolipids requires the presence of four small glycoproteins called saposins, generated by proteolytic processing of a common precursor, prosaposin. Saposins share several structural properties, including six similarly located cysteines forming three disulfide bridges with the same cysteine pairings. Recently it has been noted that also other proteins have the same polypeptide motif characterized by the similar location of six cysteines. These saposin-like (SAPLIP) proteins are surfactant protein B (SP-B), Entamoeba histolytica poreforming peptide, NK-lysin, acid sphingomyelinase and acyloxyacyl hydrolase. The structural homology and the conserved disulfide bridges suggest for all SAPLIPs a common fold, called saposin fold. Up to now a precise fold, comprising five -helices, has been established only for NK-lysin. Despite their similar structure each saposin promotes the degradation of specific sphingolipids in lysosomes, e.g. Sap B that of sulfatides and Sap C that of glucosylceramides. The different activities of the saposins must reside within the module of the -helices and/or in additional specific regions of the molecule. It has been reported that saposins bind to lysosomal hydrolases and to several sphingolipids. Their structural and functional properties have been extensively reviewed and hypotheses regarding their molecular mechanisms of action have been proposed. Recent work of our group has evidenced a novel property of saposins: some of them undergo an acid-induced change in hydrophobicity that triggers their binding to phospholipid membranes. In this article we shortly review recent findings on the structure of saposins and on their interactions with lipids, with special attention to interactions with phospholipids. These findings offer a new approach for understanding the physiological role of saposins in lysosomes.  相似文献   
136.
137.
138.
During development, the vertebrate hindbrain is subdivided along its anteroposterior axis into a series of segmental bulges called rhombomeres. These segments in turn generate a repeated pattern of rhombomere-specific neurons, including reticular and branchiomotor neurons. In amphioxus (Cephalochordata), the sister group of the vertebrates, a bona fide segmented hindbrain is lacking, although the embryonic brain vesicle shows molecular anteroposterior regionalization. Therefore, evaluation of the segmental patterning of the central nervous system of agnathan embryos is relevant to our understanding of the origin of the developmental plan of the vertebrate hindbrain. To investigate the neuronal organization of the hindbrain of the Japanese lamprey, Lethenteron japonicum, we retrogradely labeled the reticulospinal and branchial motoneurons. By combining this analysis with a study of the expression patterns of genes identifying specific rhombomeric territories such as LjKrox20, LjPax6, LjEphC and LjHox3, we found that the reticular neurons in the lamprey hindbrain, including isthmic, bulbar and Mauthner cells, develop in conserved rhombomere-specific positions, similar to those in the zebrafish. By contrast, lamprey trigeminal and facial motor nuclei are not in register with rhombomere boundaries, unlike those of gnathostomes. The trigeminal-facial boundary corresponds to the rostral border of LjHox3 expression in the middle of rhombomere 4. Exogenous application of retinoic acid (RA) induced a rostral shift of both the LjHox3 expression domain and branchiomotor nuclei with no obvious repatterning of rhombomeric segmentation and reticular neurons. Therefore, whereas subtype variations of motoneuron identity along the anteroposterior axis may rely on Hox-dependent positional values, as in gnathostomes, such variations in the lamprey are not constrained by hindbrain segmentation. We hypothesize that the registering of hindbrain segmentation and neuronal patterning may have been acquired through successive and independent stepwise patterning changes during evolution.  相似文献   
139.
Hemopexin (HPX) serves as a trap for toxic plasma heme, ensuring its complete clearance by transportation to the liver. Moreover, HPX-heme has been postulated to play a key role in the homeostasis of nitric oxide (NO). Here, the thermodynamics for NO binding to rabbit ferrous HPX-heme as well as the EPR and optical absorption spectroscopic properties of rabbit ferrous nitrosylated HPX-heme (HPX-heme-NO) are reported. The value of the dissociation equilibrium constant for NO binding to rabbit ferrous HPX-heme (i.e., H) is (1.4±0.2)×10–7 M, at pH 7.0 and 10.0 °C; the value of H is unaffected by sodium chloride. At pH 7.0, rabbit ferrous HPX-heme-NO is a six-coordinate heme-iron species, characterized by an X-band EPR spectrum with an axial geometry and by =146 mM–1 cm–1 at 419 nm. At pH 4.0, rabbit ferrous HPX-heme-NO is a five-coordinate heme-iron species, characterized by an X-band EPR spectrum with three-line splitting centered at 334 mT and by =74 mM–1 cm–1 at 387 nm. The pKa value of the reversible pH-induced six- to five-coordinate spectroscopic transition is 4.8±0.1 in the absence of sodium chloride and 4.3±0.1 in the presence of 1.5×10–1 M sodium chloride. This result is in agreement with the effect of sodium chloride on rabbit HPX-heme stability. The present data have been analyzed in parallel with those of a related heme model compound and heme-protein systems.  相似文献   
140.
The potential protective effects of oleuropein, a dietary antioxidant of olive oil, has been investigated in the isolated rat heart. The organs were subjected to 30 minutes of no-flow global ischemia and then reperfused. At different time intervals, the coronary effluent was collected and assayed for creatine kinase activity as well as for reduced and oxidized glutathione. In addition, the extent of lipid peroxidation was evaluated by measuring thiobarbituric acid reactive substance concentration in cardiac muscle. Pretreatment with 20 microg/g oleuropein before ischemia resulted in a significant decrease in creatine kinase and reduced glutathione release in the perfusate. The protective effect of oleuropein against the post-ischemic oxidative burst was investigated by measuring the release, in the coronary effluent, of oxidized glutathione, a sensitive marker of heart's exposure to oxidative stress. Reflow in ischemic hearts was accompanied by a prompt release of oxidized glutathione; in ischemic hearts pretreated with oleuropein, this release was significantly reduced. Membrane lipid peroxidation was also prevented by oleuropein. The reported data provide the first experimental evidence of a direct cardioprotective effect of oleuropein in the acute events that follow coronary occlusion, likely because of its antioxidant properties. This finding strengthens the hypothesis that the nutritional benefit of olive oil in the prevention of coronary heart disease can be also related to the high content of oleuropein and its derivatives. Moreover, our data, together with the well documented antithrombotic and antiatherogenic activity of olive oil polyphenols, indicate these antioxidants as possible therapeutic tools for the pharmacological treatment of coronary heart disease as well as in the case of cardiac surgery, including transplantation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号