首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   892篇
  免费   56篇
  2023年   2篇
  2022年   2篇
  2021年   18篇
  2020年   18篇
  2019年   15篇
  2018年   17篇
  2017年   20篇
  2016年   32篇
  2015年   71篇
  2014年   57篇
  2013年   68篇
  2012年   93篇
  2011年   82篇
  2010年   66篇
  2009年   53篇
  2008年   67篇
  2007年   55篇
  2006年   50篇
  2005年   45篇
  2004年   43篇
  2003年   31篇
  2002年   25篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
排序方式: 共有948条查询结果,搜索用时 78 毫秒
151.
Mammalian filamins (FLNs) are a family of three large actin-binding proteins. FLNa, the founding member of the family, was implicated in migration by cell biological analyses and the identification of FLNA mutations in the neuronal migration disorder periventricular heterotopia. However, recent knockout studies have questioned the relevance of FLNa to cell migration. Here we have used shRNA-mediated knockdown of FLNa, FLNb or FLNa and FLNb, or, alternatively, acute proteasomal degradation of all three FLNs, to generate FLN-deficient cells and assess their ability to migrate. We report that loss of FLNa or FLNb has little effect on migration but that knockdown of FLNa and FLNb, or proteolysis of all three FLNs, impairs migration. The observed defect is primarily a deficiency in initiation of motility rather than a problem with maintenance of locomotion speed. FLN-deficient cells are also impaired in spreading. Re-expression of full length FLNa, but not re-expression of a mutated FLNa lacking immunoglobulin domains 19 to 21, reverts both the spreading and the inhibition of initiation of migration.Our results establish a role for FLNs in cell migration and spreading and suggest that compensation by other FLNs may mask phenotypes in single knockout or knockdown cells. We propose that interactions between FLNs and transmembrane or signalling proteins, mediated at least in part by immunoglobulin domains 19 to 21 are important for both cell spreading and initiation of migration.  相似文献   
152.

Background  

Previous studies on insect DNA barcoding provide contradictory results and suggest not consistent performances across orders. This work aims at providing a general evaluation of insect DNA barcoding and "mini-barcoding" by performing simulations on a large database of 15,948 DNA barcodes. We compared the proportions of correctly identified queries across a) six insect orders (Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera and Orthoptera), b) four identification criteria (Best Match: BM; Best Close Match: BCM; All Species Barcodes: ASB; tree-based identification: NJT), and c) reference databases with different taxon coverage (100, 500, 1,000, 1,500 and 1,995 insect species).  相似文献   
153.

Background  

Bacterial infections represent a global health challenge. The identification of novel antibacterial targets for both therapy and vaccination is needed on a constant basis because resistance continues to spread worldwide at an alarming rate. Even infections that were once easy to treat are becoming difficult or, in some cases, impossible to cure. Ideal targets for both therapy and vaccination are bacterial proteins exposed on the surface of the organism, which are often involved in host-pathogen interaction. Their identification can greatly benefit from technologies such as bioinformatics, proteomics and DNA microarrays.  相似文献   
154.

Background

Phylogenetic methods produce hierarchies of molecular species, inferring knowledge about taxonomy and evolution. However, there is not yet a consensus methodology that provides a crisp partition of taxa, desirable when considering the problem of intra/inter-patient quasispecies classification or infection transmission event identification. We introduce the threshold bootstrap clustering (TBC), a new methodology for partitioning molecular sequences, that does not require a phylogenetic tree estimation.

Methodology/Principal Findings

The TBC is an incremental partition algorithm, inspired by the stochastic Chinese restaurant process, and takes advantage of resampling techniques and models of sequence evolution. TBC uses as input a multiple alignment of molecular sequences and its output is a crisp partition of the taxa into an automatically determined number of clusters. By varying initial conditions, the algorithm can produce different partitions. We describe a procedure that selects a prime partition among a set of candidate ones and calculates a measure of cluster reliability. TBC was successfully tested for the identification of type-1 human immunodeficiency and hepatitis C virus subtypes, and compared with previously established methodologies. It was also evaluated in the problem of HIV-1 intra-patient quasispecies clustering, and for transmission cluster identification, using a set of sequences from patients with known transmission event histories.

Conclusion

TBC has been shown to be effective for the subtyping of HIV and HCV, and for identifying intra-patient quasispecies. To some extent, the algorithm was able also to infer clusters corresponding to events of infection transmission. The computational complexity of TBC is quadratic in the number of taxa, lower than other established methods; in addition, TBC has been enhanced with a measure of cluster reliability. The TBC can be useful to characterise molecular quasipecies in a broad context.  相似文献   
155.
Spondyloepimetaphyseal dysplasia with joint laxity, leptodactylic type (lepto-SEMDJL, aka SEMDJL, Hall type), is an autosomal dominant skeletal disorder that, in spite of being relatively common among skeletal dysplasias, has eluded molecular elucidation so far. We used whole-exome sequencing of five unrelated individuals with lepto-SEMDJL to identify mutations in KIF22 as the cause of this skeletal condition. Missense mutations affecting one of two adjacent amino acids in the motor domain of KIF22 were present in 20 familial cases from eight families and in 12 other sporadic cases. The skeletal and connective tissue phenotype produced by these specific mutations point to functions of KIF22 beyond those previously ascribed functions involving chromosome segregation. Although we have found Kif22 to be strongly upregulated at the growth plate, the precise pathogenetic mechanisms remain to be elucidated.  相似文献   
156.
Apoptosis, a genetically regulated form of cell death with distinct biochemical and morphological features, plays a relevant physiological and pathological role in the organism, being pivotal in the maintenance of tissue development and homeostasis in the adult as well as in the regulation of immune responses. Deregulation of this process causes several human disorders including cancer, autoimmune and neurodegenerative diseases. Thus, modulation of the apoptotic process and of cell death in general, is a potential therapeutic approach for the treatment of several human pathologies.  相似文献   
157.
The genes encoding glycoprotein complexes of human cytomegalovirus are often polymorphic; in particular, glycoprotein B (gB), which is essential for both in vivo and in vitro replication, is encoded by the highly polymorphic gene UL55. In this study, the distribution of gB genotypes was investigated in 44 bronchoalveolar lavage specimens from adult patients positive for human cytomegalovirus DNA by a multiplex nested fast PCR able to amplify 5 gB genotypes (gB1-gB5). The distribution of gB genotypes was as follows: 12 (27.3%) gB1, 11 (25%) gB2, 9 (20.4%) gB3, 4 (9.1%) gB4, 0 gB5, and 8 (18.2%) mixed genotypes. No difference in prevalence was found in relation to clinical features, including immunological status, non-transplant or transplant condition, and type of transplanted organ, or in follow-up specimens; while gB4 and gB3 were shown to be significantly more prevalent in patients with respiratory insufficiency, and gB4 and gB2 in those with pneumonia. The prevalence of gB genotypes in the lower respiratory tract was similar to that previously reported using other specimen types and patients, with gB1 found to be the most prevalent. The association of gB genotypes with specific clinical features should be further investigated.  相似文献   
158.
159.
Nitrogen (N) enrichment has been pinpointed as a main driver for biodiversity change. Most of our knowledge of effects of increased N availability on ecosystems comes from northern Europe and America. Most other ecosystem types have been neglected. In contribution to filling this gap, our study examined the short-term effects of N enrichment in a N-manipulation (doses and forms) field study of a severely nutrient-limited Mediterranean ecosystem located in a Natura 2000 site in Portugal. Our aims were to (a) understand the effects of N enrichment on plant diversity, and to (b) link N-driven plant community changes with changes in soil inorganic N availability. In general, the standing plant community responded to short-term N enrichment with increased richness and evenness. Changes in the plant community occurred through changes in species composition and cover, and were correlated with soil N, and N and phosphorus availability. Fertilization with 80 kg NH4NO3 ha?1 y?1 was the treatment which changed plant composition the most, while geophytes, hemicryptophytes and therophytes were the biological types more responsive to N enrichment. Dittrichia viscosa was the only species that responded significantly to increased N, i.e., its cover decreased in control plots, but increased in fertilized plots, suggesting that it could be used as an indicator of N enrichment in Mediterranean maquis. Changes in plant richness and evenness were correlated with the mean and/or the variation (standard deviation) of soil inorganic N parameters (e.g. nitrate concentration in the soil solution and the soil??s ratio of bioavailable N and phosphorus) measured along the time between the two plant community assessments. However, short- and long-term effects can be quite distinct, thus highlighting the need for further studies.  相似文献   
160.
Pollastri S  Tattini M 《Annals of botany》2011,108(7):1225-1233

Background

New roles for flavonoids, as developmental regulators and/or signalling molecules, have recently been proposed in eukaryotic cells exposed to a wide range of environmental stimuli. In plants, these functions are actually restricted to flavonols, the ancient and widespread class of flavonoids. In mosses and liverworts, the whole set of genes for flavonol biosynthesis – CHS, CHI, F3H, FLS and F3′H – has been detected. The flavonol branch pathway has remained intact for millions of years, and is almost exclusively involved in the responses of plants to a wide array of stressful agents, despite the fact that evolution of flavonoid metabolism has produced >10 000 structures.

Scope

Here the emerging functional roles of flavonoids in the responses of present-day plants to different stresses are discussed based on early, authoritative views of their primary functions during the colonization of land by plants. Flavonols are not as efficient as other secondary metabolites in absorbing wavelengths in the 290–320 nm spectral region, but display the greatest potential to keep stress-induced changes in cellular reactive oxygen species homeostasis under control, and to regulate the development of individual organs and the whole plant. Very low flavonol concentrations, as probably occurred in early terrestrial plants, may fully accomplish these regulatory functions.

Conclusions

During the last two decades the routine use of genomic, chromatography/mass spectrometry and fluorescence microimaging techniques has provided new insights into the regulation of flavonol metabolism as well as on the inter- and intracellular distribution of stress-responsive flavonols. These findings offer new evidence on how flavonols may have performed a wide array of functional roles during the colonization of land by plants. In our opinion this ancient flavonoid class is still playing the same old and robust roles in present-day plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号