首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   656篇
  免费   40篇
  2023年   4篇
  2022年   23篇
  2021年   27篇
  2020年   29篇
  2019年   82篇
  2018年   36篇
  2017年   28篇
  2016年   29篇
  2015年   29篇
  2014年   44篇
  2013年   77篇
  2012年   57篇
  2011年   60篇
  2010年   32篇
  2009年   30篇
  2008年   24篇
  2007年   18篇
  2006年   19篇
  2005年   8篇
  2004年   5篇
  2003年   5篇
  2002年   7篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1976年   1篇
  1973年   2篇
排序方式: 共有696条查询结果,搜索用时 15 毫秒
41.
42.
43.
Eight sweet pepper plant samples showing viral and viral like symptoms were collected from open field and used for detecting viral infections through biological, serological and biochemical methods. DAS-ELISA, DBIA and TPIA have relative effectiveness for detecting parenchymal viruses (CMV, TMV and PVY) and vascular virus (TYLCV), and the DAS-ELISA and TPIA are found more efficient (87.5%) than DBIA (78.1%). The examined leaf samples were found co-infected with different mixed types of viruses including (CMV, TMV, PVY and TYLCV), (CMV, PVY and TYLCV), (TMV, PVY and TYLCV) and (TMV and TYLCV) that enhanced different degrees of severe external symptoms. There are 2 out of 8 samples infected with Phytoplasma sp. by Diene’s stain and PCR using generated 16S rDNA gene primer with expected amplicon size of 680?bp. The co-infections with various viruses and phytoplasma has 12.5% frequency that reduced the levels of protein content, peroxidase and polyphenol oxidase activity quantitatively and qualitatively in 2 samples in comparison with other mixed categories. The sweet pepper plant can be considered as a reservoir for parenchymal and vascular viruses and Phytoplasma sp. due to the synergistic and antagonistic effects causing unusual and unpredictable biological and epidemiological, viral and viral-like via host biochemical effects.  相似文献   
44.
Ionizing radiation plays a central role in several medical and industrial purposes. In spite of the beneficial effects of ionizing radiation, there are some concerns related to accidental exposure that could pose a threat to the lives of exposed people. This issue is also very critical for triage of injured people in a possible terror event or nuclear disaster. The most common side effects of ionizing radiation are experienced in cancer patients who had undergone radiotherapy. For complete eradication of tumors, there is a need for high doses of ionizing radiation. However, these high doses lead to severe toxicities in adjacent organs. Management of normal tissue toxicity may be achieved via modulation of radiation responses in both normal and malignant cells. It has been suggested that treatment of patients with some adjuvant agents may be useful for amelioration of radiation toxicity or sensitization of tumor cells. However, there are always some concerns for possible severe toxicities and protection of tumor cells, which in turn affect radiotherapy outcomes. Selenium is a trace element in the body that has shown potent antioxidant and radioprotective effects for many years. Selenium can potently stimulate antioxidant defense of cells, especially via upregulation of glutathione (GSH) level and glutathione peroxidase activity. Some studies in recent years have shown that selenium is able to mitigate radiation toxicity when administered after exposure. These studies suggest that selenium may be a useful radiomitigator for an accidental radiation event. Molecular and cellular studies have revealed that selenium protects different normal cells against radiation, while it may sensitize tumor cells. These differential effects of selenium have also been revealed in some clinical studies. In the present study, we aimed to review the radiomitigative and radioprotective effects of selenium on normal cells/tissues, as well as its radiosensitive effect on cancer cells.  相似文献   
45.
46.
Gastric adenocarcinoma is usually diagnosed in late stages, necessitating the use of different therapeutic modalities. Currently, antibody-based therapies have also been approved through with limited clinical efficacy. Reinforcing antibody-based immunotherapy by using chimeric antigen receptor (CAR) T cells may enhance the approach. However, the cells can cause severe on-target and off-tumor toxicities owing to their higher sensitivity to low-level antigen expressions. To address the need for safe and reliable targets, we made a bioinformatics pipeline by which we screened overexpressed genes in the disease for off-tumor sites in many normal tissues. Our inspection showed that MSLN (Mesothelin), ANTXR1 (TEM8), and MUC3A are the probable targets of CAR T cell therapy in gastric adenocarcinoma. The proposed antigenic targets might respond to the need to simultaneously target multiple antigens in a tumor matrix to prevent resistance.  相似文献   
47.
Nowadays, increased use of nanomaterials in industry and biomedicine poses potential risks to human health and the environment. Studying their possible toxicological effects is therefore of great significance. The present investigation was designed to examine the status of oxidative stress induced by nanoparticles (NPs) of ferric oxide (Fe2O 3) and titanium oxide (TiO 2) with their micro-sized counterpart on mouse lung and bone marrow–derived normal tissue cells. We assessed the induction of oxidative stress by measuring its indicators such as antioxidant scavenging activity of superoxide dismutase and catalase as well as malondialdehyde concentration. Moreover, colony formation of bone marrow cells was assayed following induction with colony stimulating factor (CSF) from lung cells. NPs had a more potent stimulatory effect on the oxidative stress status than their micron-sized counterparts. In addition, the highest level of oxidative stress derived from TiO 2 NPs was observed in both tissue types. Cotreatment with NPs and the antioxidant α-tocopherol reduced antioxidant activities and membrane lipid peroxidation (LPO) in the lung cells, but increased CSF-induced colony formation activity of bone marrow cells, suggesting that oxidative stress may be the cause of the cytotoxic effects of NPs. It is concluded that free radicals generated following exposure to NPs resulted in significant oxidative stress in mouse cells, indicated by increased LPO and antioxidant enzyme activity and decreased colony formation.  相似文献   
48.
Several studies have suggested a positive correlation between heat shock protein (hsp) expression and tumor immunogenicity. Independently, many studies have shown that hsp purified from tumors can be used as a tumor-specific vaccine. In this study, we have explored the connection between hsp expression and anti-tumor immunity by transducing murine CT26 colon carcinoma cells with the cDNA of a major hsp, i.e. hsp110. We have shown that over-expression of hsp110 has no effect on CT26 tumor cell growth in vitro, and does not inhibit their anchorage-independent growth capacity. However, in situ, hsp110 over-expressing CT26 tumor (CT26-hsp110) grew at a significantly reduced rate as compared to the wild-type CT26 tumor in immunocompetent mice. Moreover, immunization of mice with inactivated CT26-hsp110 cells significantly inhibited the growth of wild-type CT26 tumor. This immunity was associated with an increased frequency of tumor-specific T cells after vaccination. An in vivo antibody depletion assay demonstrated that inactivated CT26-hsp110 cells elicited anti-tumor responses involving CD8(+) T cells and natural killer (NK) cells, but not CD4(+) T cells. Lastly, the effect of the addition of granulocyte-macrophage colony stimulating factor (GM-CSF) to these vaccine formulations was determined. Mice immunized with irradiated CT26-hsp110 cells combined with GM-CSF-producing bystander cells revealed a complete inhibition of CT26 tumor growth, indicating a synergy between inactivated CT26-hsp110 vaccine activity and GM-CSF. These observations demonstrate that manipulation of hsp110 expression in tumors, specifically when combined with GM-CSF, represents a potentially powerful approach to cancer vaccine formulation.  相似文献   
49.
Monoamine oxidase-B (MAO-B) from rat brain was inhibited strongly by the prepared cadmium and zinc ethanolamine complexes obtained from their sulphate and chloride salts. The inhibition of MAO-B by these complexes was time-dependent and fully reversible after dilution and sedimentation. In vitro, the cadmium ethanolamine complexes were more potent at inhibiting MAO-B than the zinc complexes. The inhibitory effect of these complexes follow the order: TEA>DEA>MEA, due to the alkyl residues and steric effect properties. The inhibition of MAO-B by cadmium and zinc ethanolamine complexes was a noncompetitive type. The K(i) values were calculated. The influence of the complexes on the activity of MAO-B was rather evaluated. It decreased the MAO-B activity. The IC(50) values of the two potent cadmium and zinc triethanolamine complexes on MAO-B were evaluated indicating that the complexes were tightly binding, but reversible inhibitors for MAO-B. In general, these systems may be used for preventing some neurodegenerative diseases.  相似文献   
50.
Pharmacological evidence implicates trans-cinnamic acid as a feedback modulator of the expression and enzymatic activity of the first enzyme in the phenylpropanoid pathway, L-phenylalanine ammonia-lyase (PAL). To test this hypothesis independently of methods that utilize potentially non-specific inhibitors, we generated transgenic tobacco lines with altered activity levels of the second enzyme of the pathway, cinnamic acid 4-hydroxylase (C4H), by sense or antisense expression of an alfalfa C4H cDNA. PAL activity and levels of phenylpropanoid compounds were reduced in leaves and stems of plants in which C4H activity had been genetically down-regulated. However, C4H activity was not reduced in plants in which PAL activity had been down-regulated by gene silencing. In crosses between a tobacco line over-expressing PAL from a bean PAL transgene and a C4H antisense line, progeny populations harboring both the bean PAL sense and C4H antisense transgenes had significantly lower extractable PAL activity than progeny populations harboring the PAL transgene alone. Our data provide genetic evidence for a feedback loop at the entry point into the phenylpropanoid pathway that had previously been inferred from potentially artifactual pharmacological experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号