首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1308篇
  免费   64篇
  2023年   3篇
  2022年   9篇
  2021年   22篇
  2020年   11篇
  2019年   15篇
  2018年   14篇
  2017年   18篇
  2016年   26篇
  2015年   42篇
  2014年   67篇
  2013年   61篇
  2012年   83篇
  2011年   109篇
  2010年   65篇
  2009年   48篇
  2008年   103篇
  2007年   94篇
  2006年   84篇
  2005年   77篇
  2004年   76篇
  2003年   90篇
  2002年   72篇
  2001年   9篇
  2000年   10篇
  1999年   11篇
  1998年   15篇
  1997年   6篇
  1996年   13篇
  1995年   15篇
  1994年   7篇
  1993年   14篇
  1992年   10篇
  1991年   8篇
  1990年   5篇
  1989年   8篇
  1988年   2篇
  1986年   6篇
  1985年   3篇
  1984年   6篇
  1982年   4篇
  1981年   5篇
  1980年   7篇
  1979年   4篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1972年   3篇
  1968年   3篇
  1965年   3篇
排序方式: 共有1372条查询结果,搜索用时 15 毫秒
71.
Phospholipase A(2) (PLA(2)) was purified to homogeneity from the supernatant fraction of rat testis homogenate. The purified 63-kDa enzyme did not require Ca(2+) ions for activity and exhibited both phosphatidic acid-preferring PLA(2) and monoacylglycerol lipase activities with a modest specificity toward unsaturated acyl chains. Anionic detergents enhanced these activities. Serine-modifying irreversible inhibitors, (p-amidinophenyl) methanesulfonyl fluoride and methylarachidonyl fluorophosphonate, inhibited both activities to a similar extent, indicating a single active site is involved in PLA(2) and lipase activities. The sequence of NH(2)-terminal 12 amino acids of purified enzyme was identical to that of a carboxylesterase from rat liver. The optimal pH for PLA(2) activity (around 5.5) differed from that for lipase activity (around 8.0). At pH 5.5 the enzyme also hydrolyzed bis(monoacylglycerol) phosphate, or lysobisphosphatidic acid (LBPA), that has been hitherto known as a secretory PLA(2)-resistant phospholipid and a late endosome marker. LBPA-enriched fractions were prepared from liver lysosome fractions of chloroquine-treated rats, treated with excess of pancreatic PLA(2), and then used for assaying LBPA-hydrolyzing activity. LBPA and the reaction products were identified by microbore normal phase high performance liquid chromatography/electrospray ionization ion-trap mass spectrometry. These enzymatic properties suggest that the enzyme can metabolize phosphatidic and lysobisphosphatidic acids in cellular acidic compartments.  相似文献   
72.
We examined the signaling pathway by which hepatocyte growth factor (HGF) induces cell motility, with special focus on the role of extracellular signal-regulated kinase (ERK) in the nucleus. We used Madin-Darby canine kidney cells overexpressing ERK2 because of their prominent motility response to HGF. HGF stimulation of the cells induces not only a rapid, marked, and sustained activation and rapid nuclear accumulation of ERK1/2, but also a prolonged nuclear retention of the activated ERK1/2. Interruption of the ERK1/2 activation by PD98059 treatment of the cells 30 min after HGF stimulation abolishes the HGF-induced cell motility. Enforced cytoplasmic retention of the activated ERK1/2 by the expression of an inactive form of MKP-3 cytoplasmic phosphatase inhibits the cell motility response. Although epidermal growth factor stimulation of the cells induces the activation and nuclear accumulation of ERK1/2, it does not induce the prolonged nuclear retention of the activated ERK1/2, and fails to induce cell motility. In the nucleus, activated ERK1/2 continuously phosphorylate Elk-1, leading to the prolonged expression of c-fos, which results in the expression of several genes such as matrix metalloproteinase (mmp)-9; MMP-9 activity is required for the induction of the cell motility response. Our results indicate that the sustained activity of ERK1/2 in the nucleus is required for the induction of HGF-induced cell motility.  相似文献   
73.
Nakamura M  Zhou XZ  Kishi S  Lu KP 《FEBS letters》2002,514(2-3):193-198
Pin2/TRF1 was independently identified as a telomeric DNA-binding protein (TRF1) that regulates telomere length, and as a protein (Pin2) that can bind the mitotic kinase NIMA and suppress its lethal phenotype. We have previously demonstrated that Pin2/TRF1 levels are cell cycle-regulated and its overexpression induces mitotic arrest and then apoptosis. This Pin2/TRF1 activity can be potentiated by microtubule-disrupting agents, but suppressed by phosphorylation of Pin2/TRF1 by ATM; this negative regulation is critical in mediating for many, but not all, ATM-dependent phenotypes. Interestingly, Pin2/TRF1 specifically localizes to mitotic spindles in mitotic cells and affects the microtubule polymerization in vitro. These results suggest a role of Pin2/TRF1 in mitosis. However, nothing is known about whether Pin2/TRF1 affects the spindle function in mitotic progression. Here we characterized a new Pin2/TRF1-interacting protein, EB1, that was originally identified in our yeast two-hybrid screen. Pin2/TRF1 bound EB1 both in vitro and in vivo and they also co-localize at the mitotic spindle in cells. Furthermore, EB1 inhibits the ability of Pin2/TRF1 to promote microtubule polymerization in vitro. Given that EB1 is a microtubule plus end-binding protein, these results further confirm a specific interaction between Pin2/TRF1 and the mitotic spindle. More importantly, we have shown that inhibition of Pin2/TRF1 in ataxia-telangiectasia cells is able to fully restore their mitotic spindle defect in response to microtubule disruption, demonstrating for the first time a functional involvement of Pin2/TRF1 in mitotic spindle regulation.  相似文献   
74.
Kinesin family proteins are microtubule-dependent molecular motors involved in the intracellular motile process. Using a Ca2+ -binding protein, CHP (calcineurin B homologous protein), as a bait for yeast two hybrid screening, we identified a novel kinesin-related protein, KIF1Bbeta2. KIF1Bbeta2 is a member of the KIF1 subfamily of kinesin-related proteins, and consists of an amino terminal KIF1B-type motor domain followed by a tail region highly similar to that of KIF1A. CHP binds to regions adjacent to the motor domains of KIF1Bbeta2 and KIF1B, but not to those of the other KIF1 family members, KIF1A and KIF1C. Immunostaining of neuronal cells showed that a significant portion of KIF1Bbeta2 is co-localized with synaptophysin, a marker protein for synaptic vesicles, but not with a mitochondria-staining dye. Subcellular fractionation analysis indicated the co-localization of KIF1Bbeta2 with synaptophysin. These results suggest that KIF1Bbeta2, a novel CHP-interacting molecular motor, mediates the transport of synaptic vesicles in neuronal cells.  相似文献   
75.
76.
Matsuo M 《IUBMB life》2002,53(3):147-152
Duchenne and Becker muscular dystrophy (DMD/BMD) are X-linked muscular dystrophies. The isolation of the defective gene in DMD/BMD has led to a better understanding of the disease process and has promoted studies regarding the application of molecular therapy. The purpose of this review is to present the progress made in this area of research with particular reference to dystrophin Kobe. Based on the results from the molecular analysis of dystrophin Kobe, we propose a novel molecular therapeutic method for DMD in which antisense oligonucleotides transform DMD into a milder phenotype by inducing exon skipping. In addition, current proposals for the molecular therapy of DMD are discussed.  相似文献   
77.
Effect of metformin on adipose tissue resistin expression in db/db mice   总被引:17,自引:0,他引:17  
Resistin, a novel adipose-derived protein, has been proposed to cause insulin-resistant states in obesity. To evaluate whether an insulin-sensitizing drug, metformin, regulates adipose tissue resistin expression, murine models of obesity and diabetes, db/db mice, were treated with metformin (metformin group), insulin (insulin group), and vehicle (control group) for 4 weeks, followed by analyzing resistin protein expression in their adipose tissues. Unexpectedly, resistin protein expression was increased by 66% in the metformin group relative to the control group, while it did not differ between the insulin and control groups. Hyperinsulinemia was improved in the metformin group, while the insulin group exhibited severe hyperinsulinemia, similar to the control group. Furthermore, in comparison between obese mice (db/db mice) and age-matched lean controls, resistin protein expression was reduced by 58% in the obese mice with severe hyperinsulinemia. These data collectively suggest that resistin expression may be suppressed by hyperinsulinemia and that metformin may upregulate resistin expression via the improvement of hyperinsulinemia in obesity.  相似文献   
78.
Although the four polypeptides of blasticidin S (BS) deaminase (BSD) are packed rather tightly coordinated to the "structural and catalytic" zinc atom of each subunit, the C-terminal region of the enzyme was suggested to be somewhat molten and flexible [M. Kimura, S. Sekido, Y. Isogai, and I. Yamaguchi (2000) J. Biochem. 127, 955-963]. To understand roles of this flexible region, we constructed five C-terminal deletion variants of BSD (each successively deleted from the C-terminal end up to five residues) and analyzed their biochemical properties focusing on the structure and activity of the enzyme. BSD and all of the deletion mutants showed the unique rigid conformation (e.g., characterized by their stabilities in SDS solution) and high levels of resistance against protease digestions. Furthermore, both the wild-type and deletion apoenzymes exhibited similar physical properties in thermodynamic refolding into the stable tetramer conformation. However, these small C-terminal deletions exerted deleterious effects on the catalytic efficiency of the enzyme as indicated by their strongly reduced k(cat)/K(m) value. Judging from the altered kinetic parameters and unaltered structural properties of the deletion variants, these C-terminal residues appear to be directly involved in enzyme-substrate interaction. In this short flexible region, Tyr-126, Trp-128, and Gly-130 were the key residues. Most notably, removal of Gly-130 markedly increased K(m) for BS without affecting its k(cat) value. These results indicate that the flexible C-terminal region is important for catalytic function and that a single Gly residue at the C-terminal end of BSD contributes significantly in facilitating access of a substrate to the active site.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号