首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   28篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   10篇
  2015年   11篇
  2014年   9篇
  2013年   9篇
  2012年   9篇
  2011年   13篇
  2010年   7篇
  2009年   15篇
  2008年   12篇
  2007年   17篇
  2006年   20篇
  2005年   22篇
  2004年   23篇
  2003年   13篇
  2002年   12篇
  2001年   10篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   4篇
  1995年   1篇
  1994年   2篇
  1992年   6篇
  1991年   4篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1968年   1篇
  1967年   2篇
  1964年   1篇
排序方式: 共有286条查询结果,搜索用时 187 毫秒
181.

Background  

Porphyromonas gingivalis is a periodontal pathogen that resides in a complex multispecies microbial biofilm community known as dental plaque. Confocal laser scanning microscopy showed that P. gingivalis can assemble into communities in vitro with Streptococcus gordonii and Fusobacterium nucleatum, common constituents of dental plaque. Whole cell quantitative proteomics, along with mutant construction and analysis, were conducted to investigate how P. gingivalis adapts to this three species community.  相似文献   
182.
Porphyromonas gingivalis is an oral pathogen that is also associated with serious systemic conditions such as preterm delivery. Here we investigated the interaction between P. gingivalis and a cell line of extravillous trophoblasts (HTR-8) derived from the human placenta. P. gingivalis internalized within HTR-8 cells and inhibited proliferation through induction of arrest in the G1 phase of the cell cycle. G1 arrest was associated with decreased expression of cyclin D and of CDKs 2, 4 and 6. In addition, levels of CDK inhibitors p15, p16, p18 and p21 were increased following P. gingivalis infection. The amount of Rb was diminished by P. gingivalis, and transient overexpression of Rb, with concomitant upregulation of phospho-Rb, relieved P. gingivalis -induced G1 arrest. HTR-8 cells halted in the G1 phase became apoptotic, and apoptosis was accompanied by an increase in the ratio of Bax/Bcl-2 and increased activity of caspases 3, 7 and 9. HTR-8 cells infected with P. gingivalis also exhibited a sustained activation of ERK1/2, and knock-down of ERK1/2 activity with siRNA abrogated both G1 arrest and apoptosis. Thus, P. gingivalis can invade placental trophoblasts and induce G1 arrest and apoptosis through pathways involving ERK1/2 and its downstream effectors, properties that provide a mechanistic basis for pathogenicity in complications of pregnancy.  相似文献   
183.
DNA polymerase eta (Pol eta) is the product of the Polh gene, which is responsible for the group variant of xeroderma pigmentosum, a rare inherited recessive disease which is characterized by susceptibility to sunlight-induced skin cancer. We recently reported in a study of Polh mutant mice that Pol eta is involved in the somatic hypermutation of immunoglobulin genes, but the cancer predisposition of Polh-/- mice has not been examined until very recently. Another translesion synthesis polymerase, Pol iota, a Pol eta paralog encoded by the Poli gene, is naturally deficient in the 129 mouse strain, and the function of Pol iota is enigmatic. Here, we generated Polh Poli double-deficient mice and compared the tumor susceptibility of them with Polh- or Poli-deficient animals under the same genetic background. While Pol iota deficiency does not influence the UV sensitivity of mouse fibroblasts irrespective of Polh genotype, Polh Poli double-deficient mice show slightly earlier onset of skin tumor formation. Intriguingly, histological diagnosis after chronic treatment with UV light reveals that Pol iota deficiency leads to the formation of mesenchymal tumors, such as sarcomas, that are not observed in Polh(-/-) mice. These results suggest the involvement of the Pol eta and Pol iota proteins in UV-induced skin carcinogenesis.  相似文献   
184.
d-Aspartate oxidase (DDO) and d-amino acid oxidase (DAO) are flavin adenine dinucleotide (FAD)-containing flavoproteins that catalyze the oxidative deamination of d-amino acids. While several functionally and structurally important amino acid residues have been identified in the DAO protein, little is known about the structure–function relationships of DDO. In the search for a potent DDO inhibitor as a novel tool for investigating its structure–function relationships, a large number of biologically active compounds of microbial origin were screened for their ability to inhibit the enzymatic activity of mouse DDO. We discovered several compounds that inhibited the activity of mouse DDO, and one of the compounds identified, thiolactomycin (TLM), was then characterized and evaluated as a novel DDO inhibitor. TLM reversibly inhibited the activity of mouse DDO with a mixed type of inhibition more efficiently than meso-tartrate and malonate, known competitive inhibitors of mammalian DDOs. The selectivity of TLM was investigated using various DDOs and DAOs, and it was found that TLM inhibits not only DDO, but also DAO. Further experiments with apoenzymes of DDO and DAO revealed that TLM is most likely to inhibit the activities of DDO and DAO by competition with both the substrate and the coenzyme, FAD. Structural models of mouse DDO/TLM complexes supported this finding. The binding mode of TLM to DDO was validated further by site-directed mutagenesis of an active site residue, Arg-237. Collectively, our findings show that TLM is a novel, active site-directed DDO inhibitor that will be useful for elucidating the molecular details of the active site environment of DDO.  相似文献   
185.
The re-emergence of tuberculosis (TB) in the mid-1980s in many parts of the world, including the United States, is often attributed to the emergence and rapid spread of human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS). Although it is well established that TB transmission is particularly amplified in populations with high HIV prevalence, the epidemiology of interaction between TB and HIV is not well understood. This is partly due to the scarcity of HIV-related data, a consequence of the voluntary nature of HIV status reporting and testing, and partly due to current practices of screening high risk populations through separate surveillance programs for HIV and TB. The San Francisco Department of Public Health, TB Control Program, has been conducting active surveillance among the San Francisco high-risk populations since the early 1990s. We present extensive TB surveillance data on HIV and TB infection among the San Francisco homeless to investigate the association between the TB cases and their HIV+ contacts. We applied wavelet coherence and phase analyses to the TB surveillance data from January 1993 through December 2005, to establish and quantify statistical association and synchrony in the highly non-stationary and ostensibly non-periodic waves of TB cases and their HIV+ contacts in San Francisco. When stratified by homelessness, we found that the evolution of TB cases and their HIV+ contacts is highly coherent over time and locked in phase at a specific periodic scale among the San Francisco homeless, but no significant association was observed for the non-homeless. This study confirms the hypothesis that the dynamics of HIV and TB are significantly intertwined and that HIV is likely a key factor in the sustenance of TB transmission among the San Francisco homeless. The findings of this study underscore the importance of contact tracing in detection of HIV+ individuals that may otherwise remain undetected, and thus highlights the ever-increasing need for HIV-related data and an integrative approach to monitoring high-risk populations with respect to HIV and TB transmission.  相似文献   
186.
Orthostatic hypotension is a common condition for individuals with stroke or spinal cord injury. The inability to regulate the central nervous system will result in pooling of blood in the lower extremities leading to orthostatic intolerance. This study compared the use of functional electrical stimulation (FES) and passive leg movements to improve orthostatic tolerance during head-up tilt. Four trial conditions were assessed during head-up tilt: (1) rest, (2) isometric FES of the hamstring, gastrocnemius and quadriceps muscle group, (3) passive mobilization using the Erigo dynamic tilt table; and (4) dynamic FES (combined 2 and 3). Ten healthy male subjects experienced 70 degrees head-up tilt for 15 min under each trial condition. Heart rate, blood pressure and abdominal echograms of the inferior vena cava were recorded for each trial. Passive mobilization and dynamic FES resulted in an increase in intravascular blood volume, while isometric FES only resulted in elevating heart rate. No significant differences in blood pressure were observed under each condition. We conclude that FES combined with passive stepping movements may be an effective modality to increase circulating blood volume and thereby tolerance to postural hypotension in healthy subjects.  相似文献   
187.
The understanding of D-amino acid metabolism in higher plants lags far behind that in mammals, for which the biological functions of these unique amino acids have already been elucidated. In this article, we report on the biochemical behavior of D-amino acids (particularly D-Asp) and relevant metabolic enzymes in Arabidopsis thaliana. During germination and growth of the plant, a transient increase in D-Asp levels was observed, suggesting that D-Asp is synthesized in the plant. Administration of D-Asp suppressed growth, although the inhibitory mechanism responsible for this remains to be clarified. Exogenous D-Asp was efficiently incorporated and metabolized, and was converted to other D-amino acids (D-Glu and D-Ala). We then studied the related metabolic enzymes, and consequently cloned and characterized A. thaliana D-amino acid aminotransferase, which is presumably involved in the metabolism of D-Asp in the plant by catalyzing transamination between D-amino acids. This is the first report of cDNA cloning and functional characterization of a D-amino acid aminotransferase in eukaryotes. The results presented here provide important information for understanding the significance of D-amino acids in the metabolism of higher plants.  相似文献   
188.
Notch, Delta and Serrate encode transmembrane proteins that function in cell fate specification in the Drosophila melanogaster embryo. Here we report gene expression patterns and functional characterization of a Xenopus Serrate homolog, X-Serrate-1. The isolated cDNA encoded a transmembrane protein with a Delta/Serrate/LAG-2 domain, 16 epidermal growth factor-like repeats and a cysteine-rich region. Expression of X-Serrate-1 was observed ubiquitously from unfertilized egg to tadpole, but an upregulation occurred in the tailbud stage embryo. Adult expression was found in eye, brain, kidney, heart, spleen and ovary. Whole-mount in situ hybridization revealed that the organ-related expression in eye, brain, heart and kidney occurred from an early stage of rudiment formation. Overexpression of X-Serrate-1 led to a reduction of primary neurons, whereas an intracellularly deleted form of X-Serrate-1 increased the number of primary neurons. Although the function of X-Serrate-1 in primary neurogenesis was quite similar to that of X-Delta-1, expression of X-Serrate-1 and X-Delta-1 did not affect each other. Co-injection experiments showed that wild-type X-Serrate-1 and X-Delta-1 suppressed overproduction of primary neurons induced by dominant-negative forms of X-Delta-1 and X-Serrate-1, respectively. These results suggest that X-Serrate-1 regulates the patterning of primary neurons in a complementary manner with X-Delta-1-mediated Notch signaling.  相似文献   
189.
The carbon and energy metabolisms of a variety of cultured chemolithoautotrophic Epsilonproteobacteria from deep-sea hydrothermal environments were characterized by both enzymatic and genetic analyses. All the Epsilonproteobacteria tested had all three key reductive tricarboxylic acid (rTCA) cycle enzymatic activities—ATP-dependent citrate lyase, pyruvate:ferredoxin oxidoreductase, and 2-oxoglutarate:ferredoxin oxidoreductase—while they had no ribulose 1,5-bisphosphate carboxylase (RubisCO) activity, the key enzyme in the Calvin-Benson cycle. These results paralleled the successful amplification of the key rTCA cycle genes aclB, porAB, and oorAB and the lack of success at amplifying the form I and II RubisCO genes, cbbL and cbbM. The combination of enzymatic and genetic analyses demonstrates that the Epsilonproteobacteria tested use the rTCA cycle for carbon assimilation. The energy metabolisms of deep-sea Epsilonproteobacteria were also well specified by the enzymatic and genetic characterization: hydrogen-oxidizing strains had evident soluble acceptor:methyl viologen hydrogenase activity and hydrogen uptake hydrogenase genes (hyn operon), while sulfur-oxidizing strains lacked both the enzyme activity and the genes. Although the energy metabolism of reduced sulfur compounds was not genetically analyzed and was not fully clarified, sulfur-oxidizing Epsilonproteobacteria showed enzyme activity of a potential sulfite:acceptor oxidoreductase for a direct oxidation pathway to sulfate but no activity of AMP-dependent adenosine 5′-phosphate sulfate reductase for a indirect oxidation pathway. No activity of thiosulfate-oxidizing enzymes was detected. The enzymatic and genetic characteristics described here were consistent with cellular carbon and energy metabolisms and suggest that molecular tools may have great potential for in situ elucidation of the ecophysiological roles of deep-sea Epsilonproteobacteria.  相似文献   
190.
Samples from three submerged sites (MC, a core obtained in the methane seep area; MR, a reference core obtained at a distance from the methane seep; and HC, a gas-bubbling carbonate sample) at the Kuroshima Knoll in the southern Ryuku arc were analyzed to gain insight into the organisms present and the processes involved in this oxic-anoxic methane seep environment. 16S rRNA gene analyses by quantitative real-time PCR and clone library sequencing revealed that the MC core sediments contained abundant archaea (~34% of the total prokaryotes), including both mesophilic methanogens related to the genus Methanolobus and ANME-2 members of the Methanosarcinales, as well as members of the δ-Proteobacteria, suggesting that both anaerobic methane oxidation and methanogenesis occurred at this site. In addition, several functional genes connected with methane metabolism were analyzed by quantitative competitive-PCR, including the genes encoding particulate methane monooxygenase (pmoA), soluble methane monooxygenase (mmoX), methanol dehydrogenese (mxaF), and methyl coenzyme M reductase (mcrA). In the MC core sediments, the most abundant gene was mcrA (2.5 × 106 copies/g [wet weight]), while the pmoA gene of the type I methanotrophs (5.9 × 106 copies/g [wet weight]) was most abundant at the surface of the MC core. These results indicate that there is a very complex environment in which methane production, anaerobic methane oxidation, and aerobic methane oxidation all occur in close proximity. The HC carbonate site was rich in γ-Proteobacteria and had a high copy number of mxaF (7.1 × 106 copies/g [wet weight]) and a much lower copy number of the pmoA gene (3.2 × 102 copies/g [wet weight]). The mmoX gene was never detected. In contrast, the reference core contained familiar sequences of marine sedimentary archaeal and bacterial groups but not groups specific to C1 metabolism. Geochemical characterization of the amounts and isotopic composition of pore water methane and sulfate strongly supported the notion that in this zone both aerobic methane oxidation and anaerobic methane oxidation, as well as methanogenesis, occur.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号