首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1354篇
  免费   93篇
  国内免费   4篇
  2024年   4篇
  2023年   25篇
  2022年   41篇
  2021年   97篇
  2020年   91篇
  2019年   167篇
  2018年   99篇
  2017年   79篇
  2016年   82篇
  2015年   72篇
  2014年   87篇
  2013年   123篇
  2012年   108篇
  2011年   88篇
  2010年   59篇
  2009年   50篇
  2008年   45篇
  2007年   18篇
  2006年   27篇
  2005年   20篇
  2004年   20篇
  2003年   19篇
  2002年   16篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1988年   2篇
  1985年   1篇
排序方式: 共有1451条查询结果,搜索用时 15 毫秒
51.
52.
53.
Leishmaniasis is a worldwide disease that leads to high mortality and morbidity in human populations. Today, leishmaniasis is managed via drug therapy. The drugs that are already in clinical use are limited to a number of toxic chemical compounds and their parasite drug resistance is increasing. It is therefore essential, in order to circumvent the current difficulties, to design a new anti-leishmanial drug treatment strategy. Besides producing new, active anti-leishmanial entities, another promising strategy could be developing novel delivery systems and formulations of the existing pharmaceutical ingredients to improve drug efficacy. In the present study, paromomycin sulfate (PM), as one of the promising anti-leishmanial drugs, was formulated in solid lipid nanoparticles (SLN), and its in vitro efficacy was investigated against different strains of Leishmania using a MTT test, Parasite-Rescue-Transformation-Assay, SYTO Green staining, and fluorescent microscope imaging. The results show that PM-loaded SLN is significantly more effective than PM in inhibiting parasite propagation (P?<?0.05) and that cytotoxicity of PM-SLN formulations is size dependent. According to our results, delivery of the drugs to the macrophages via nanoparticle utilization seems to be an accessible and practical approach.  相似文献   
54.
Cancer is a multi‐faceted disease comprised of a combination of genetic, epigenetic, metabolic and signalling aberrations which severely disrupt the normal homoeostasis of cell growth and death. Rational developments of highly selective drugs which specifically block only one of the signalling pathways have been associated with limited therapeutic success. Multi‐targeted prevention of cancer has emerged as a new paradigm for effective anti‐cancer treatment. Platycodin D, a triterpenoid saponin, is one the major active components of the roots of Platycodon grandiflorum and possesses multiple biological and pharmacological properties including, anti‐nociceptive, anti‐atherosclerosis, antiviral, anti‐inflammatory, anti‐obesity, immunoregulatory, hepatoprotective and anti‐tumour activities. Recently, the anti‐cancer activity of platycodin D has been extensively studied. The purpose of this review was to give our perspectives on the current status of platycodin D and discuss its anti‐cancer activity and molecular mechanisms which may help the further design and conduct of pre‐clinical and clinical trials to develop it successfully into a potential lead drug for oncological therapy. Platycodin D has been shown to fight cancer by inducing apoptosis, cell cycle arrest, and autophagy and inhibiting angiogenesis, invasion and metastasis by targeting multiple signalling pathways which are frequently deregulated in cancers suggesting that this multi‐target activity rather than a single effect may play an important role in developing platycodin D into potential anti‐cancer drug.  相似文献   
55.
56.
Trunk diseases are potential threats for almond productivity and longevity worldwide, including Iran. In a recent survey on fungal species associated with trunk diseases of almonds in north‐western Iran, Collophora isolates (tentatively identified as Collophora hispanica) were recovered with high frequency from wood samples with internal necrosis and brown to black vascular streaking of almond trees showing symptoms of decline. However, the pathogenic potential of Collophora isolates on almond trees in Iran remains unproven. In this study, the identity of the isolates was further confirmed as C. hispanica based on a combination of morphological data and sequence data of ITS‐rDNA region, and pathogenicity of C. hispanica isolates on almond was evaluated using excised shoot method and in greenhouse experiments. Collophora hispanica isolates induced lesions statistically different from the control, in both excised shoot method and greenhouse assays. Significant differences were observed among the isolates in the length of the lesion induced on wood. Collophora hispanica should be considered as the main trunk pathogens of almond trees in north‐western region of Iran. The distribution and host range of this new pathogen on almond remains to be studied.  相似文献   
57.
The present study was designed to assess the influence of geographical factors on essential oil (EO) composition, along with antiradical potential and phytochemical contents of Ferulago angulata (Schltdl .) Boiss (Apiaceae) extracts for the first time. The aerial parts were hydrodistilled by Clevenger apparatus and subjected to gas chromatography coupled with flame ionization detector (GC/FID) and mass spectroscopy (GC/MS). The EO yields were significantly different from populations ‘Mongar’ (south‐slope, 3000 m) with 1.34±0.06 % and ‘Male‐Amiri’ (north slope, 2600 m) with 0.18±0.05 % of total oil. Thirty‐nine compounds were identified from the EOs of nine populations. α‐Pinene was the predominant component ranging from 20.84 to 49.06 % in ‘Gandomkar’ (north‐slope, 2500 m) and ‘Mongar’ (3000 m), respectively. The methanolic extract of ‘Mongar’ (north‐slope at 2500 m) possessed the highest total phenolic contents. Also, this population logically exhibited potent antiradical activity using both 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) assays with EC50 of 42.07±4.12 μg/mL and 8.34±0.21 mmol Trolox® equivalents/g, respectively. Due to its moderate free‐radical scavenging potential and high α‐pinene content, the population ‘Mongar’ might be considered as a perspective raw material in food and phytopharmaceutical industries.  相似文献   
58.
A new series of coumarin‐3‐carboxamide‐N‐morpholine hybrids 5a – 5l was designed and synthesized as cholinesterases inhibitors. The synthetic approach for title compounds was started from the reaction between 2‐hydroxybenzaldehyde derivatives and Meldrum's acid to afford corresponding coumarin‐3‐carboxylic acids. Then, amidation of the latter compounds with 2‐morpholinoethylamine or N‐(3‐aminopropyl)morpholine led to the formation of the compounds 5a – 5l . The in vitro inhibition screen against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) revealed that most of the synthesized compounds had potent AChE inhibitory while their BuChE inhibitions are moderate to weak. Among them, propylmorpholine derivative 5g (N‐[3‐(morpholin‐4‐yl)propyl]‐2‐oxo‐2H‐chromene‐3‐carboxamide) bearing an unsubstituted coumarin moiety and ethylmorpholine derivative 5d (6‐bromo‐N‐[2‐(morpholin‐4‐yl)ethyl]‐2‐oxo‐2H‐chromene‐3‐carboxamide) bearing a 6‐bromocoumarin moiety showed the most activity against AChE and BuChE, respectively. The inhibitory activity of compound 5g against AChE was 1.78 times more than that of rivastigmine and anti‐BuChE activity of compound 5d is approximately same as rivastigmine. Kinetic and docking studies confirmed the dual binding site ability of compound 5g to inhibit AChE.  相似文献   
59.
UV‐induced synthesis/accumulation of photoprotective pigments and antioxidant activity were investigated in the hot‐spring cyanobacterium Leptolyngbya cf. fragilis. The results indicated that UV radiation may induce biosynthesis of carotenoids, allophycocyanin, phycoerythrin, and scytonemin while phycocyanin degrades in response to longtime UV radiation. Moreover, pigment composition of L. cf. fragilis was significantly altered with increasing UV radiation times, probably due to destruction and resynthesis of accessory pigments as an adaptation strategy to UV stress. The in vitro antioxidant analysis of different extracts of UV treated cyanobacteria exhibited concentration‐dependent antioxidant activity. Ethyl acetate extract of 72 h UV treatment showed maximum total antioxidant activity (IC50 = 71.73 ± 5.3 μg mL?1) followed by ethyl acetate control (non‐UV irradiated) extract (IC50 = 109.43 ± 2.76 μg mL?1). This is the first report for the UV‐induced synthesis of photoprotective pigments and their antioxidant activity in L. cf. fragilis.  相似文献   
60.
Nano and bulk-forms of zinc oxide (ZnO) are used extensively in industry and consequently may accumulate in the environment. However, there is little information available on the comparative effects of these forms during the critical early stages of plant life. Furthermore, the role of chelating agents, which affect the bioavailability of metals, in ameliorating plant stress due to exposure to nano and bulk-forms of ZnO is not well characterised. In this study, the effects of different concentrations (0.5, 2.5, 5, 10, 50 and 100 ppm) of nano ZnO (22 nm) and bulk ZnO (natural form, 1000 nm) with and without organic (citrate) and inorganic (EDTA) chelators on germination and seedling growth, and oxidative stress markers of Nicotiana tabacum L. were compared. Chelators (without ZnO) enhanced root growth, whilst ZnO negatively affected seedling growth. ZnO toxicity was often mitigated by adding chelators, especially citrate, although at the highest levels (50 and 100?ppm) of ZnO, toxicity was more pronounced when chelated with EDTA, but was decreased with citrate. Collectively, our findings provide important information regarding the different morpho-physiological and biochemical effects of bulk and nano ZnO and organic and inorganic chelators (citrate and EDTA), which are all prevalent in the environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号