首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19245篇
  免费   2058篇
  国内免费   12篇
  2021年   268篇
  2020年   165篇
  2019年   189篇
  2018年   253篇
  2017年   221篇
  2016年   398篇
  2015年   711篇
  2014年   761篇
  2013年   911篇
  2012年   1156篇
  2011年   1178篇
  2010年   794篇
  2009年   678篇
  2008年   941篇
  2007年   1024篇
  2006年   991篇
  2005年   970篇
  2004年   869篇
  2003年   875篇
  2002年   918篇
  2001年   328篇
  2000年   281篇
  1999年   300篇
  1998年   280篇
  1997年   214篇
  1996年   206篇
  1995年   183篇
  1994年   190篇
  1993年   184篇
  1992年   220篇
  1991年   226篇
  1990年   222篇
  1989年   236篇
  1988年   194篇
  1987年   224篇
  1986年   174篇
  1985年   196篇
  1984年   195篇
  1983年   184篇
  1982年   203篇
  1981年   175篇
  1980年   151篇
  1979年   143篇
  1978年   134篇
  1977年   126篇
  1976年   113篇
  1975年   105篇
  1974年   126篇
  1973年   113篇
  1972年   116篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
22.
The in vivo effects of dexamethasone administration on liver and extrahepatic tissue carnitine concentrations were assessed in 48-h-starved rats. In heart and kidney, but not in liver, dexamethasone significantly increased total carnitine concentration. Acute (2.5 h) treatment with 2-tetradecylglycidate (TDG), a specific inhibitor of carnitine palmitoyl transferase 1, not only increased total hepatic carnitine concentrations, but also permitted an effect of dexamethasone (a further increase in hepatic carnitine concentration). The results are discussed in terms of acute (substrate-mediated) and chronic (hormonal) control of carnitine turnover.  相似文献   
23.
24.
25.
26.
Complex ecological pressures affect the social dynamics of many primate species, but it is unclear how they affect primate speciation. Molecular tools are often used to answer questions about the evolutionary histories and social systems of primates. Mitochondrial DNA (mtDNA), in particular, is frequently used to answer many of these questions, but because it is passed from mothers to offspring it reveals only the histories of females. In many species, including chimpanzees, females generally disperse from their natal groups while males are philopatric, and thus differences in dispersal patterns likely leave different signatures in the genome. We previously analyzed samples from 187 unrelated male and female chimpanzees in Nigeria and Cameroon using 21 autosomal microsatellites and mtDNA sequences. Here, we examine the contributions of males and females in shaping the genetic history of these chimpanzees by genotyping a subset of 56 males at 12 Y-chromosome microsatellites. We found that Y-chromosome population structure differed from the results of analysis of mtDNA haplotypes. The results also revealed that males in rainforest habitats (Guinean and Congolian rainforests) are more closely related to one another than those inhabiting the savanna-woodland mosaic ecotone in central Cameroon. In contrast, the pattern of female relatedness did not differ across habitats. We hypothesize that these differences in population structure and patterns of relatedness among males in different habitat types may be due to differences in the community dynamics of chimpanzees in the ecotone vs. rainforests, and that these factors contribute to making Cameroon an engine of diversification for chimpanzees. Broadly, these results demonstrate the importance of habitat variation in shaping social systems, population genetics, and primate speciation.  相似文献   
27.
28.
Current issues in fish welfare   总被引:11,自引:0,他引:11  
Human beings may affect the welfare of fish through fisheries, aquaculture and a number of other activities. There is no agreement on just how to weigh the concern for welfare of fish against the human interests involved, but ethical frameworks exist that suggest how this might be approached. Different definitions of animal welfare focus on an animal's condition, on its subjective experience of that condition and/or on whether it can lead a natural life. These provide different, legitimate, perspectives, but the approach taken in this paper is to focus on welfare as the absence of suffering. An unresolved and controversial issue in discussions about animal welfare is whether non‐human animals exposed to adverse experiences such as physical injury or confinement experience what humans would call suffering. The neocortex, which in humans is an important part of the neural mechanism that generates the subjective experience of suffering, is lacking in fish and non‐mammalian animals, and it has been argued that its absence in fish indicates that fish cannot suffer. A strong alternative view, however, is that complex animals with sophisticated behaviour, such as fish, probably have the capacity for suffering, though this may be different in degree and kind from the human experience of this state. Recent empirical studies support this view and show that painful stimuli are, at least, strongly aversive to fish. Consequently, injury or experience of other harmful conditions is a cause for concern in terms of welfare of individual fish. There is also growing evidence that fish can experience fear‐like states and that they avoid situations in which they have experienced adverse conditions. Human activities that potentially compromise fish welfare include anthropogenic changes to the environment, commercial fisheries, recreational angling, aquaculture, ornamental fish keeping and scientific research. The resulting harm to fish welfare is a cost that must be minimized and weighed against the benefits of the activity concerned. Wild fish naturally experience a variety of adverse conditions, from attack by predators or conspecifics to starvation or exposure to poor environmental conditions. This does not make it acceptable for humans to impose such conditions on fish, but it does suggest that fish will have mechanisms to cope with these conditions and reminds us that pain responses are in some cases adaptive (for example, suppressing feeding when injured). In common with all vertebrates, fish respond to environmental challenges with a series of adaptive neuro‐endocrine adjustments that are collectively termed the stress response. These in turn induce reversible metabolic and behavioural changes that make the fish better able to overcome or avoid the challenge and are undoubtedly beneficial, in the short‐term at least. In contrast, prolonged activation of the stress response is damaging and leads to immuno‐suppression, reduced growth and reproductive dysfunction. Indicators associated with the response to chronic stress (physiological endpoints, disease status and behaviour) provide a potential source of information on the welfare status of a fish. The most reliable assessment of well‐being will be obtained by examining a range of informative measures and statistical techniques are available that enable several such measures to be combined objectively. A growing body of evidence tells us that many human activities can harm fish welfare, but that the effects depend on the species and life‐history stage concerned and are also context‐dependent. For example, in aquaculture, adverse effects related to stocking density may be eliminated if good water quality is maintained. At low densities, bad water quality may be less likely to arise whereas social interactions may cause greater welfare problems. A number of key differences between fish and birds and mammals have important implications for their welfare. Fish do not need to fuel a high body temperature, so the effects of food deprivation on welfare are not so marked. For species that live naturally in large shoals, low rather than high densities may be harmful. On the other hand, fish are in intimate contact with their environment through the huge surface area of their gills, so they are vulnerable to poor water quality and water borne pollutants. Extrapolation between taxa is dangerous and general frameworks for ensuring welfare in other vertebrate animals need to be modified before they can be usefully applied to fish. The scientific study of fish welfare is at an early stage compared with work on other vertebrates and a great deal of what we need to know is yet to be discovered. It is clearly the case that fish, though different from birds and mammals, however, are sophisticated animals, far removed from unfeeling creatures with a 15 s memory of popular misconception. A heightened appreciation of these points in those who exploit fish and in those who seek to protect them would go a long way towards improving fish welfare.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号